Menu Close

2023-2021-2019-mod-1000-x-x-9-x-89-1-8-y-x-y-




Question Number 130970 by naka3546 last updated on 31/Jan/21
2023^(2021^(2019) )   mod  1000  =  x  (√((x/9) + ((x +89))^(1/8) ))  =  y  x + y  =   ?
$$\mathrm{2023}^{\mathrm{2021}^{\mathrm{2019}} } \:\:\mathrm{mod}\:\:\mathrm{1000}\:\:=\:\:{x} \\ $$$$\sqrt{\frac{{x}}{\mathrm{9}}\:+\:\sqrt[{\mathrm{8}}]{{x}\:+\mathrm{89}}}\:\:=\:\:{y} \\ $$$${x}\:+\:{y}\:\:=\:\:\:? \\ $$
Commented by AlagaIbile last updated on 31/Jan/21
 Since gcd(2023,1000)=1.   λ(1000)= 100 , λ(100)= 20. λ(∙) denote   Carmicheal Lambda Function   2023^(2021^(2019  mod 20)  mod 100)  mod 1000   ≡ 23^(21^(19)  mod 100) mod 1000   ≡ 23^(81)    mod 1000   ≡ (167)^(27)  ≡ (463)^9  ≡ (847)^3  mod 1000   x ≡ 423  mod 1000   ∴ y =(√(((423)/9) + ((423+89))^(1/8) )) = (√(47 + ((512))^(1/8) ))   x + y = 423 + (√(47 + 2(2)^(1/8) ))   Observation: To make y an integer the question should ask for   y = (√((x/9) + ((x + 89))^(1/9) )) = 7  ∴ x + y = 423 + 7 = 450
$$\:{Since}\:\boldsymbol{{gcd}}\left(\mathrm{2023},\mathrm{1000}\right)=\mathrm{1}. \\ $$$$\:\lambda\left(\mathrm{1000}\right)=\:\mathrm{100}\:,\:\lambda\left(\mathrm{100}\right)=\:\mathrm{20}.\:\lambda\left(\centerdot\right)\:{denote} \\ $$$$\:{Carmicheal}\:{Lambda}\:{Function} \\ $$$$\:\mathrm{2023}^{\mathrm{2021}^{\mathrm{2019}\:\:{mod}\:\mathrm{20}} \:{mod}\:\mathrm{100}} \:{mod}\:\mathrm{1000} \\ $$$$\:\equiv\:\mathrm{23}^{\mathrm{21}^{\mathrm{19}} \:{mod}\:\mathrm{100}} {mod}\:\mathrm{1000} \\ $$$$\:\equiv\:\mathrm{23}^{\mathrm{81}} \:\:\:{mod}\:\mathrm{1000} \\ $$$$\:\equiv\:\left(\mathrm{167}\right)^{\mathrm{27}} \:\equiv\:\left(\mathrm{463}\right)^{\mathrm{9}} \:\equiv\:\left(\mathrm{847}\right)^{\mathrm{3}} \:{mod}\:\mathrm{1000} \\ $$$$\:\boldsymbol{{x}}\:\equiv\:\mathrm{423}\:\:{mod}\:\mathrm{1000} \\ $$$$\:\therefore\:\boldsymbol{{y}}\:=\sqrt{\frac{\mathrm{423}}{\mathrm{9}}\:+\:\sqrt[{\mathrm{8}}]{\mathrm{423}+\mathrm{89}}}\:=\:\sqrt{\mathrm{47}\:+\:\sqrt[{\mathrm{8}}]{\mathrm{512}}} \\ $$$$\:\boldsymbol{{x}}\:+\:\boldsymbol{{y}}\:=\:\mathrm{423}\:+\:\sqrt{\mathrm{47}\:+\:\mathrm{2}\sqrt[{\mathrm{8}}]{\mathrm{2}}} \\ $$$$\:\boldsymbol{{Observation}}:\:{To}\:{make}\:\boldsymbol{{y}}\:{an}\:{integer}\:{the}\:{question}\:{should}\:{ask}\:{for} \\ $$$$\:\boldsymbol{{y}}\:=\:\sqrt{\frac{\boldsymbol{{x}}}{\mathrm{9}}\:+\:\sqrt[{\mathrm{9}}]{\boldsymbol{{x}}\:+\:\mathrm{89}}}\:=\:\mathrm{7} \\ $$$$\therefore\:\boldsymbol{{x}}\:+\:\boldsymbol{{y}}\:=\:\mathrm{423}\:+\:\mathrm{7}\:=\:\mathrm{450} \\ $$
Commented by naka3546 last updated on 31/Jan/21
Thank you, sir.
$${Thank}\:{you},\:{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *