Question Number 176058 by Shrinava last updated on 11/Sep/22

$$\mathrm{22}^{\mathrm{22}} \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{hte}\:\mathrm{last}\:\mathrm{digit}? \\ $$
Answered by BaliramKumar last updated on 11/Sep/22

$$\mathrm{4} \\ $$
Commented by BaliramKumar last updated on 11/Sep/22
![22^(22) = 22^(4(5)+2) [x^(4(n) + r) = x^r ] 0<r≤4 2^2 = 4 Answer example 39857^(2576) 39857^(4(n)+4) 7^4 = 1 Answer example 2345678^(3566765!) 8^(4(n)+4) = 8^4 = 6 If x! then r=4 (x ≥ 4)](https://www.tinkutara.com/question/Q176075.png)
$$\mathrm{22}^{\mathrm{22}} \:=\:\mathrm{22}^{\mathrm{4}\left(\mathrm{5}\right)+\mathrm{2}} \:\:\:\:\:\:\:\left[{x}^{\mathrm{4}\left({n}\right)\:+\:{r}} \:=\:{x}^{{r}} \right]\:\:\mathrm{0}<{r}\leq\mathrm{4} \\ $$$$\mathrm{2}^{\mathrm{2}} \:=\:\mathrm{4}\:{Answer} \\ $$$$ \\ $$$${example}\:\mathrm{39857}^{\mathrm{2576}} \\ $$$$\mathrm{39857}^{\mathrm{4}\left({n}\right)+\mathrm{4}} \\ $$$$\mathrm{7}^{\mathrm{4}} \:=\:\mathrm{1}\:{Answer} \\ $$$$ \\ $$$${example}\:\:\:\:\:\:\:\mathrm{2345678}^{\mathrm{3566765}!} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{8}^{\mathrm{4}\left({n}\right)+\mathrm{4}} \:=\:\mathrm{8}^{\mathrm{4}} \:=\:\mathrm{6} \\ $$$$ \\ $$$${If}\:\:\:\:{x}!\:\:\:\:{then}\:\:\:\:{r}=\mathrm{4}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({x}\:\geq\:\mathrm{4}\right) \\ $$
Commented by Shrinava last updated on 11/Sep/22

$$\mathrm{solution}\:\mathrm{please} \\ $$
Commented by Rasheed.Sindhi last updated on 11/Sep/22
![Your rule is successful! 👍 Actually I think: In general a≡b[10] ∧ m≡n[4]⇔a^m ≡b^n [10]](https://www.tinkutara.com/question/Q176081.png)
$$\mathrm{Your}\:\mathrm{rule}\:\mathrm{is}\:\boldsymbol{\mathrm{successful}}!\: \\ $$
Commented by Shrinava last updated on 13/Sep/22

Answered by Rasheed.Sindhi last updated on 11/Sep/22

Answered by LordKazuma last updated on 11/Sep/22
