Menu Close

25-x-5x-e-5-can-this-be-solved-




Question Number 147945 by Gbenga last updated on 24/Jul/21
25^x +5x=e^5  (can this be solved)
25x+5x=e5(canthisbesolved)
Commented by mr W last updated on 24/Jul/21
x=(e^5 /5)−((W(2×5^(((2e^5 )/5)−1) ln 5))/(2ln 5))≈1.536821
x=e55W(2×52e551ln5)2ln51.536821
Commented by Gbenga last updated on 24/Jul/21
thanks
thanks
Answered by Canebulok last updated on 24/Jul/21
Solution:  ⇒ 25^x  = e^5 −5x  ⇒ (e^5 −5x)∙5^(−2x)  = 1  ⇒ (e^5 −5x)e^(−2x∙ln(5))  = 1  By multiplying both sides by “ ((2∙ln(5))/5) ”,  ⇒ (((2e^5 ∙ln(5))/5)−2x∙ln(5))e^(−2x∙ln(5))  = ((2∙ln(5))/5)  ⇒ (((2e^5 ∙ln(5))/5)−2x∙ln(5))e^(((2e^5 ∙ln(5))/5)−2x∙ln(5))  = ((2∙ln(5))/5)∙e^((2e^5 ∙ln(5))/5)   By Lambert W.function,  ⇒ (((2e^5 ∙ln(5))/5)−2x∙ln(5)) = W(((2∙ln(5))/5)∙e^((2e^5 ∙ln(5))/5) )  ⇒ 2x∙ln(5) = ((2e^5 ∙ln(5))/5)−W(((2∙ln(5))/5)∙e^((2e^5 ∙ln(5))/5) )  ⇒ x = ((((2e^5 ∙ln(5))/5)−W(((2∙ln(5))/5)∙e^((2e^5 ∙ln(5))/5) ))/(2∙ln(5)))  ⇒ x = (e^5 /5)−((W(((2∙ln(5))/5)∙e^((2e^5 ∙ln(5))/5) ))/(2∙ln(5))) ≈ 1.536821146     Solution by: Kevin
Solution:25x=e55x(e55x)52x=1(e55x)e2xln(5)=1Bymultiplyingbothsidesby2ln(5)5,(2e5ln(5)52xln(5))e2xln(5)=2ln(5)5(2e5ln(5)52xln(5))e2e5ln(5)52xln(5)=2ln(5)5e2e5ln(5)5ByLambertW.function,(2e5ln(5)52xln(5))=W(2ln(5)5e2e5ln(5)5)2xln(5)=2e5ln(5)5W(2ln(5)5e2e5ln(5)5)x=2e5ln(5)5W(2ln(5)5e2e5ln(5)5)2ln(5)x=e55W(2ln(5)5e2e5ln(5)5)2ln(5)1.536821146Solutionby:Kevin
Commented by Gbenga last updated on 24/Jul/21
nice solution
nicesolution

Leave a Reply

Your email address will not be published. Required fields are marked *