Question Number 147945 by Gbenga last updated on 24/Jul/21
$$\mathrm{25}^{{x}} +\mathrm{5}{x}={e}^{\mathrm{5}} \:\left({can}\:{this}\:{be}\:{solved}\right) \\ $$$$ \\ $$
Commented by mr W last updated on 24/Jul/21
$${x}=\frac{{e}^{\mathrm{5}} }{\mathrm{5}}−\frac{\mathbb{W}\left(\mathrm{2}×\mathrm{5}^{\frac{\mathrm{2}{e}^{\mathrm{5}} }{\mathrm{5}}−\mathrm{1}} \mathrm{ln}\:\mathrm{5}\right)}{\mathrm{2ln}\:\mathrm{5}}\approx\mathrm{1}.\mathrm{536821} \\ $$
Commented by Gbenga last updated on 24/Jul/21
$${thanks} \\ $$
Answered by Canebulok last updated on 24/Jul/21
$$\boldsymbol{{Solution}}: \\ $$$$\Rightarrow\:\mathrm{25}^{{x}} \:=\:{e}^{\mathrm{5}} −\mathrm{5}{x} \\ $$$$\Rightarrow\:\left({e}^{\mathrm{5}} −\mathrm{5}{x}\right)\centerdot\mathrm{5}^{−\mathrm{2}{x}} \:=\:\mathrm{1} \\ $$$$\Rightarrow\:\left({e}^{\mathrm{5}} −\mathrm{5}{x}\right){e}^{−\mathrm{2}{x}\centerdot{ln}\left(\mathrm{5}\right)} \:=\:\mathrm{1} \\ $$$${By}\:{multiplying}\:{both}\:{sides}\:{by}\:“\:\frac{\mathrm{2}\centerdot{ln}\left(\mathrm{5}\right)}{\mathrm{5}}\:'', \\ $$$$\Rightarrow\:\left(\frac{\mathrm{2}{e}^{\mathrm{5}} \centerdot{ln}\left(\mathrm{5}\right)}{\mathrm{5}}−\mathrm{2}{x}\centerdot{ln}\left(\mathrm{5}\right)\right){e}^{−\mathrm{2}{x}\centerdot{ln}\left(\mathrm{5}\right)} \:=\:\frac{\mathrm{2}\centerdot{ln}\left(\mathrm{5}\right)}{\mathrm{5}} \\ $$$$\Rightarrow\:\left(\frac{\mathrm{2}{e}^{\mathrm{5}} \centerdot{ln}\left(\mathrm{5}\right)}{\mathrm{5}}−\mathrm{2}{x}\centerdot{ln}\left(\mathrm{5}\right)\right){e}^{\frac{\mathrm{2}{e}^{\mathrm{5}} \centerdot{ln}\left(\mathrm{5}\right)}{\mathrm{5}}−\mathrm{2}{x}\centerdot{ln}\left(\mathrm{5}\right)} \:=\:\frac{\mathrm{2}\centerdot{ln}\left(\mathrm{5}\right)}{\mathrm{5}}\centerdot{e}^{\frac{\mathrm{2}{e}^{\mathrm{5}} \centerdot{ln}\left(\mathrm{5}\right)}{\mathrm{5}}} \\ $$$${By}\:{Lambert}\:{W}.{function}, \\ $$$$\Rightarrow\:\left(\frac{\mathrm{2}{e}^{\mathrm{5}} \centerdot{ln}\left(\mathrm{5}\right)}{\mathrm{5}}−\mathrm{2}{x}\centerdot{ln}\left(\mathrm{5}\right)\right)\:=\:{W}\left(\frac{\mathrm{2}\centerdot{ln}\left(\mathrm{5}\right)}{\mathrm{5}}\centerdot{e}^{\frac{\mathrm{2}{e}^{\mathrm{5}} \centerdot{ln}\left(\mathrm{5}\right)}{\mathrm{5}}} \right) \\ $$$$\Rightarrow\:\mathrm{2}{x}\centerdot{ln}\left(\mathrm{5}\right)\:=\:\frac{\mathrm{2}{e}^{\mathrm{5}} \centerdot{ln}\left(\mathrm{5}\right)}{\mathrm{5}}−{W}\left(\frac{\mathrm{2}\centerdot{ln}\left(\mathrm{5}\right)}{\mathrm{5}}\centerdot{e}^{\frac{\mathrm{2}{e}^{\mathrm{5}} \centerdot{ln}\left(\mathrm{5}\right)}{\mathrm{5}}} \right) \\ $$$$\Rightarrow\:{x}\:=\:\frac{\frac{\mathrm{2}{e}^{\mathrm{5}} \centerdot{ln}\left(\mathrm{5}\right)}{\mathrm{5}}−{W}\left(\frac{\mathrm{2}\centerdot{ln}\left(\mathrm{5}\right)}{\mathrm{5}}\centerdot{e}^{\frac{\mathrm{2}{e}^{\mathrm{5}} \centerdot{ln}\left(\mathrm{5}\right)}{\mathrm{5}}} \right)}{\mathrm{2}\centerdot{ln}\left(\mathrm{5}\right)} \\ $$$$\Rightarrow\:{x}\:=\:\frac{{e}^{\mathrm{5}} }{\mathrm{5}}−\frac{{W}\left(\frac{\mathrm{2}\centerdot{ln}\left(\mathrm{5}\right)}{\mathrm{5}}\centerdot{e}^{\frac{\mathrm{2}{e}^{\mathrm{5}} \centerdot{ln}\left(\mathrm{5}\right)}{\mathrm{5}}} \right)}{\mathrm{2}\centerdot{ln}\left(\mathrm{5}\right)}\:\approx\:\mathrm{1}.\mathrm{536821146} \\ $$$$\: \\ $$$${Solution}\:{by}:\:{Kevin} \\ $$
Commented by Gbenga last updated on 24/Jul/21
$${nice}\:{solution} \\ $$$$ \\ $$