Question Number 118280 by hmh2k20 last updated on 16/Oct/20
$$\left(\mathrm{26}\right)\:\:\:\overset{\rightarrow} {\mathrm{OA}}\:=\:\overset{\rightarrow} {\mathrm{a}}\:=\:\begin{pmatrix}{\mathrm{4}.\mathrm{8}}\\{\mathrm{3}.\mathrm{6}}\end{pmatrix}\:\:,\:\:\overset{\rightarrow} {\mathrm{OB}}\:=\:\overset{\rightarrow} {\mathrm{b}}\:=\:\begin{pmatrix}{\:\:\mathrm{8}}\\{\mathrm{15}}\end{pmatrix} \\ $$$$\:\:\:\:\:\:\:\:\:\:\overset{\rightarrow} {\mathrm{a}}.\:\overset{\rightarrow} {\mathrm{b}}\:=\:\left(\mathrm{4}.\mathrm{8}\right)\left(\mathrm{8}\right)\:+\:\left(\mathrm{3}.\mathrm{6}\right)\left(\mathrm{15}\right)\:=\:\mathrm{92}.\overset{\rightarrow\:} {\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{a}\:=\:\sqrt{\mathrm{4}.\mathrm{8}^{\mathrm{2}} +\mathrm{3}.\mathrm{6}^{\mathrm{2}} }\:=\:\:\sqrt{\mathrm{23}.\mathrm{04}+\mathrm{12}.\mathrm{96}}\:=\:\sqrt{\mathrm{36}}\:=\:\mathrm{6} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{b}\:=\:\sqrt{\mathrm{8}^{\mathrm{2}} +\mathrm{15}^{\mathrm{2}} }\:=\:\sqrt{\mathrm{64}+\mathrm{225}}\:=\:\sqrt{\mathrm{289}}\:=\:\mathrm{17} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{a}.\mathrm{b}\:=\:\mathrm{6}\:.\:\mathrm{17}\:=\:\mathrm{102} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{cos}\:\mathrm{AOB}\:=\:\frac{\overset{\rightarrow} {\mathrm{a}}.\overset{\rightarrow} {\mathrm{b}}}{\mathrm{a}.\mathrm{b}}\:=\:\frac{\mathrm{92}.\mathrm{4}}{\mathrm{102}}\:=\:\mathrm{0}.\mathrm{9059}\:=\:\mathrm{cos}\:\mathrm{25}.\mathrm{06}° \\ $$$$\:\:\:\:\:\:\:\:\:\:\therefore\:\:\angle\mathrm{AOB}\:=\:\mathrm{25}.\mathrm{06}° \\ $$
Commented by Ar Brandon last updated on 16/Oct/20