Menu Close

2a-sin-25-a-51-0-find-a-




Question Number 40875 by Tawa1 last updated on 28/Jul/18
2a sin(((25)/a)) − 51 = 0,  find a
$$\mathrm{2a}\:\mathrm{sin}\left(\frac{\mathrm{25}}{\mathrm{a}}\right)\:−\:\mathrm{51}\:=\:\mathrm{0},\:\:\mathrm{find}\:\mathrm{a} \\ $$
Answered by MrW3 last updated on 29/Jul/18
let′s have a look at the function f(x)=((sin (x))/x).  we know following about it:  f(−x)=f(x) ⇒symmetric  lim_(x→0)  f(x)=1  lim_(x→∞)  f(x)=0  max. f(x)=1  min. f(x)=−0.2172  i.e. −0.2172≤f(x)<1    2a sin (((25)/a))=50×((sin (((25)/a)))/((((25)/a))))=50 ((sin (x))/x)=50 f(x) with x=((25)/a)  since f(x)<1  ⇒2a sin (((25)/a))=50 f(x)<50  ⇒2a sin (((25)/a))−51<−1  that′t to say 2a sin (((25)/a))−51=0 is not  possible.    ⇒there is no solution for a which  fulfills 2a sin (((25)/a))−51=0.
$${let}'{s}\:{have}\:{a}\:{look}\:{at}\:{the}\:{function}\:{f}\left({x}\right)=\frac{\mathrm{sin}\:\left({x}\right)}{{x}}. \\ $$$${we}\:{know}\:{following}\:{about}\:{it}: \\ $$$${f}\left(−{x}\right)={f}\left({x}\right)\:\Rightarrow{symmetric} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{f}\left({x}\right)=\mathrm{1} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{f}\left({x}\right)=\mathrm{0} \\ $$$${max}.\:{f}\left({x}\right)=\mathrm{1} \\ $$$${min}.\:{f}\left({x}\right)=−\mathrm{0}.\mathrm{2172} \\ $$$${i}.{e}.\:−\mathrm{0}.\mathrm{2172}\leqslant{f}\left({x}\right)<\mathrm{1} \\ $$$$ \\ $$$$\mathrm{2}{a}\:\mathrm{sin}\:\left(\frac{\mathrm{25}}{{a}}\right)=\mathrm{50}×\frac{\mathrm{sin}\:\left(\frac{\mathrm{25}}{{a}}\right)}{\left(\frac{\mathrm{25}}{{a}}\right)}=\mathrm{50}\:\frac{\mathrm{sin}\:\left({x}\right)}{{x}}=\mathrm{50}\:{f}\left({x}\right)\:{with}\:{x}=\frac{\mathrm{25}}{{a}} \\ $$$${since}\:{f}\left({x}\right)<\mathrm{1} \\ $$$$\Rightarrow\mathrm{2}{a}\:\mathrm{sin}\:\left(\frac{\mathrm{25}}{{a}}\right)=\mathrm{50}\:{f}\left({x}\right)<\mathrm{50} \\ $$$$\Rightarrow\mathrm{2}{a}\:\mathrm{sin}\:\left(\frac{\mathrm{25}}{{a}}\right)−\mathrm{51}<−\mathrm{1} \\ $$$${that}'{t}\:{to}\:{say}\:\mathrm{2}\boldsymbol{{a}}\:\boldsymbol{\mathrm{sin}}\:\left(\frac{\mathrm{25}}{\boldsymbol{{a}}}\right)−\mathrm{51}=\mathrm{0}\:{is}\:{not} \\ $$$${possible}. \\ $$$$ \\ $$$$\Rightarrow{there}\:{is}\:{no}\:{solution}\:{for}\:{a}\:{which} \\ $$$${fulfills}\:\mathrm{2}\boldsymbol{{a}}\:\boldsymbol{\mathrm{sin}}\:\left(\frac{\mathrm{25}}{\boldsymbol{{a}}}\right)−\mathrm{51}=\mathrm{0}. \\ $$
Commented by Tawa1 last updated on 29/Jul/18
God bless you sir.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *