Menu Close

2cos-2-x-25-cot-x-0-x-




Question Number 119220 by benjo_mathlover last updated on 23/Oct/20
     2cos^2 x −25 cot x = 0        x =?
2cos2x25cotx=0x=?
Answered by MJS_new last updated on 23/Oct/20
cos x =(1/( (√(1+tan^2  x))))  let t=tan x  (2/(t^2 +1))−((25)/t)=0  t^2 −(2/(25))t+1=0  t=(1/(25))±((4(√(39)))/(25))i  no real solution  x=nπ+arctan ((1±4(√(39))i)/(25))
cosx=11+tan2xlett=tanx2t2+125t=0t2225t+1=0t=125±43925inorealsolutionx=nπ+arctan1±439i25
Commented by MJS_new last updated on 23/Oct/20
I forgot lim_(t→±∞)  ((2/(t^2 +1))−((25)/t)) =0  ⇒ x=nπ±(π/2)
Iforgotlimt±(2t2+125t)=0x=nπ±π2
Commented by benjo_mathlover last updated on 23/Oct/20
yes
yes
Answered by 1549442205PVT last updated on 23/Oct/20
     2cos^2 x −25 cot x = 0   ⇔2cos^2 x−25((cosx)/(sinx))=0 ⇒sinx≠0⇔x≠kπ  ⇔cosx(2sinxcosx−25)=0  ⇔cosx(sin2x−25)=0(since sin2x−25)≠0  ⇔cosx=0⇔x=(π/2)+mπ(m∈Z)
2cos2x25cotx=02cos2x25cosxsinx=0sinx0xkπcosx(2sinxcosx25)=0cosx(sin2x25)=0(sincesin2x25)0cosx=0x=π2+mπ(mZ)
Commented by MJS_new last updated on 23/Oct/20
you are right. but it′s even shorter  cos x (2cos x −((25)/(sin x)))=0 ⇒ cos x =0
youareright.butitsevenshortercosx(2cosx25sinx)=0cosx=0
Commented by 1549442205PVT last updated on 23/Oct/20
But i want to explain that sin2x−25=0  has no real roots,Sir
Butiwanttoexplainthatsin2x25=0hasnorealroots,Sir

Leave a Reply

Your email address will not be published. Required fields are marked *