Menu Close

2cos-pi-13-cos-9pi-13-cos-3pi-13-cos-5pi-13-0-




Question Number 21259 by oyshi last updated on 17/Sep/17
2cos (π/(13))cos ((9π)/(13))+cos ((3π)/(13))+cos ((5π)/(13))=0
$$\mathrm{2cos}\:\frac{\pi}{\mathrm{13}}\mathrm{cos}\:\frac{\mathrm{9}\pi}{\mathrm{13}}+\mathrm{cos}\:\frac{\mathrm{3}\pi}{\mathrm{13}}+\mathrm{cos}\:\frac{\mathrm{5}\pi}{\mathrm{13}}=\mathrm{0} \\ $$
Answered by myintkhaing last updated on 18/Sep/17
L.H.S=cos ((10π)/(13)) +cos ((8π)/(13)) +cos ((3π)/(13)) +cos ((5π)/(13))  =cos(π−((3π)/(13)))+cos(π−((5π)/(13)))+cos ((3π)/(13))+cos ((5π)/(13))  = −cos((3π)/(13))−cos((5π)/(13))+cos((3π)/(13))+cos((5π)/(13)) = 0
$$\mathrm{L}.\mathrm{H}.\mathrm{S}=\mathrm{cos}\:\frac{\mathrm{10}\pi}{\mathrm{13}}\:+\mathrm{cos}\:\frac{\mathrm{8}\pi}{\mathrm{13}}\:+\mathrm{cos}\:\frac{\mathrm{3}\pi}{\mathrm{13}}\:+\mathrm{cos}\:\frac{\mathrm{5}\pi}{\mathrm{13}} \\ $$$$=\mathrm{cos}\left(\pi−\frac{\mathrm{3}\pi}{\mathrm{13}}\right)+\mathrm{cos}\left(\pi−\frac{\mathrm{5}\pi}{\mathrm{13}}\right)+\mathrm{cos}\:\frac{\mathrm{3}\pi}{\mathrm{13}}+\mathrm{cos}\:\frac{\mathrm{5}\pi}{\mathrm{13}} \\ $$$$=\:−\mathrm{cos}\frac{\mathrm{3}\pi}{\mathrm{13}}−\mathrm{cos}\frac{\mathrm{5}\pi}{\mathrm{13}}+\mathrm{cos}\frac{\mathrm{3}\pi}{\mathrm{13}}+\mathrm{cos}\frac{\mathrm{5}\pi}{\mathrm{13}}\:=\:\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *