Menu Close

2cos-pi-9-1-3-2cos-2pi-9-1-3-2cos-4pi-9-1-3-




Question Number 90876 by john santu last updated on 26/Apr/20
((2cos ((π/9))))^(1/(3  )) −((2cos (((2π)/9))))^(1/(3  )) −((2cos (((4π)/9))))^(1/(3  ))  = ?
2cos(π9)32cos(2π9)32cos(4π9)3=?
Commented by john santu last updated on 26/Apr/20
Ramanujan theorem  let α, β ,γ be a roots   x^3 −ax^2 +bx−1=0  then ((α ))^(1/(3 ))  + (β)^(1/(3 ))  + (γ)^(1/(3 ))  = ((a+6+3t))^(1/(3 ))   with t^3 −3(a+b+3)t−(ab+6(a+b)+9)=0  ⇒ (α)^(1/(3 )) +(β)^(1/(3 ))  +(γ)^(1/(3 ))  = ((a+6+3t))^(1/(3 ))  = ϕ  ((αβ))^(1/(3 ))  + ((βγ))^(1/(3  ))  + ((αγ))^(1/(3  ))  = ((b+6+3t))^(1/(3 ))  = θ  (t+3)^3  = (ϕθ)^3   consider x^3 −3x−1=0  x = t+(1/t) ⇒t^9  +1 = 0  t^9  = −1 = e^(iπ+2πki)  = e^(iπ(1+2k))  ,k∈Z  t = e^(iπ(((1+2k)/9)))  , k = 0,1,2,...,8  t = e^((iπ)/9)  , e^((i5π)/9) , e^((i7π)/9)   t = e^(iθ)  = cos θ+isin θ  x^3 −3x−1 = 0 roots   α = 2cos ((π/9))  β= −2cos (((2π)/9))  γ = −2cos (((4π)/9))  ∴ ((2cos ((π/9))))^(1/(3 )) −((2cos (((2π)/9))))^(1/(3 ))    −((2cos (((4π)/9))))^(1/(3  ))  = ((6−3(9)^(1/(3  )) ))^(1/(3  ))
Ramanujantheoremletα,β,γbearootsx3ax2+bx1=0thenα3+β3+γ3=a+6+3t3witht33(a+b+3)t(ab+6(a+b)+9)=0α3+β3+γ3=a+6+3t3=φαβ3+βγ3+αγ3=b+6+3t3=θ(t+3)3=(φθ)3considerx33x1=0x=t+1tt9+1=0t9=1=eiπ+2πki=eiπ(1+2k),kZt=eiπ(1+2k9),k=0,1,2,,8t=eiπ9,ei5π9,ei7π9t=eiθ=cosθ+isinθx33x1=0rootsα=2cos(π9)β=2cos(2π9)γ=2cos(4π9)2cos(π9)32cos(2π9)32cos(4π9)3=63933
Commented by jagoll last updated on 26/Apr/20

Leave a Reply

Your email address will not be published. Required fields are marked *