2cos-pi-9-1-3-2cos-2pi-9-1-3-2cos-4pi-9-1-3- Tinku Tara June 4, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 90876 by john santu last updated on 26/Apr/20 2cos(π9)3−2cos(2π9)3−2cos(4π9)3=? Commented by john santu last updated on 26/Apr/20 Ramanujantheoremletα,β,γbearootsx3−ax2+bx−1=0thenα3+β3+γ3=a+6+3t3witht3−3(a+b+3)t−(ab+6(a+b)+9)=0⇒α3+β3+γ3=a+6+3t3=φαβ3+βγ3+αγ3=b+6+3t3=θ(t+3)3=(φθ)3considerx3−3x−1=0x=t+1t⇒t9+1=0t9=−1=eiπ+2πki=eiπ(1+2k),k∈Zt=eiπ(1+2k9),k=0,1,2,…,8t=eiπ9,ei5π9,ei7π9t=eiθ=cosθ+isinθx3−3x−1=0rootsα=2cos(π9)β=−2cos(2π9)γ=−2cos(4π9)∴2cos(π9)3−2cos(2π9)3−2cos(4π9)3=6−3933 Commented by jagoll last updated on 26/Apr/20 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: tan-x-1-Cos-x-dx-Need-help-Next Next post: Question-156413 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.