Menu Close

2e-2x-e-x-3e-2x-6e-x-1-dx-




Question Number 81043 by john santu last updated on 09/Feb/20
∫ ((2e^(2x) −e^x )/( (√(3e^(2x) −6e^x −1)))) dx
2e2xex3e2x6ex1dx
Commented by john santu last updated on 09/Feb/20
u = e^x  ⇒du = e^x  dx  ∫ ((2u−1)/( (√(3(u−1)^2 −4)))) du =  ∫ ((2u−1)/(2(√((3/4)(u−1)^2 −1)))) du =  (3/4)(u−1)^2 =sec^2  θ   ⇒ ∫ ( ((2.(2/( (√3)))sec θ+1)/(2(√(sec^2 θ−1)))))(2/( (√3)))sec θtan θ dθ =  ∫ (4/3)sec^2 θ dθ +∫ (1/( (√3))) sec θ dθ =  (4/3)tan θ +(1/( (√3))) ln∣sec θ+tan θ∣+c  (4/3)(√((3/4)(e^x −1)^2 −1))+(1/( (√3))) ln∣((√3)/2)(e^x −1)+(√((3/4)(e^x −1)^2 −1))∣ +c
u=exdu=exdx2u13(u1)24du=2u1234(u1)21du=34(u1)2=sec2θ(2.23secθ+12sec2θ1)23secθtanθdθ=43sec2θdθ+13secθdθ=43tanθ+13lnsecθ+tanθ+c4334(ex1)21+13ln32(ex1)+34(ex1)21+c
Commented by john santu last updated on 09/Feb/20
maybe someone knows another way?
maybesomeoneknowsanotherway?
Commented by peter frank last updated on 09/Feb/20
sir the first line 2u^2 −u
sirthefirstline2u2u
Commented by john santu last updated on 09/Feb/20
the same sir to 2u−1
thesamesirto2u1
Commented by abdomathmax last updated on 09/Feb/20
let I=∫  ((2e^(2x) −e^x )/( (√(3e^(2x) −6e^x −1))))dx changement e^x =t?give  I=∫  ((2t^2 −t)/( (√(3t^2 −6t−1))))×(dt/t) =∫   ((2t−1)/( (√(3t^2 −6t−1))))dt  3t^2 −6t−1=0 →Δ^′ =(−3)^2 +3=12 ⇒  t_1 =((3+2(√3))/3) =1+(2/( (√3)))  and t_2 =1−(2/( (√3))) ⇒  I =∫   ((2t−1)/( (√(3(t−t_1 )(t−t_2 )))))dt =(1/( (√3)))∫  ((2t−1)/( (√(t−t_1 ))×(√(t−t_2 ))))dt  also changement (√(t−t_1 ))=u give t−t_1 =u^2  and  (√3)I=∫  ((2(u^2 +t_1 )−1)/(u(√(u^2 +t_1 −t_2 ))))×(2u)du  =2∫   ((2u^2 +2t_1 −1)/( (√(u^2 +(4/( (√3)))))))du  =_(u=(2/((^ (√(√3)))))sh(z))   =2 ∫  ((2((4/( (√3))))sh^2 (z)+2t_1 −1)/((2/(((√((√)3)))))ch(z)))×(2/(((√((√3))))))ch(z)dz  =2 ∫ {(8/( (√3)))sh^2 (z)+2t_1 −1}dz  =((16)/( (√3)))∫ sh^2 (z)dz  +(4t_1 −2)z   =((16)/( (√3)))∫ ((ch(2z)−1)/2)dz +(4t_1 −2)z  =(8/( (√3))) ∫ ch(2z)dz−(8/( (√3)))z +(4t_1 −2)z  =(4/( (√3)))sh(2z) +(4t_1 −(8/( (√3)))−2)z +c  z=argsh(((√(√3))/2)u)=ln(((√(√3))/2)u +(√(1+((√3)/4)u^2 )))  and u=(√(t−t_1 ))
letI=2e2xex3e2x6ex1dxchangementex=t?giveI=2t2t3t26t1×dtt=2t13t26t1dt3t26t1=0Δ=(3)2+3=12t1=3+233=1+23andt2=123I=2t13(tt1)(tt2)dt=132t1tt1×tt2dtalsochangementtt1=ugivett1=u2and3I=2(u2+t1)1uu2+t1t2×(2u)du=22u2+2t11u2+43du=u=2(3)sh(z)=22(43)sh2(z)+2t112(3)ch(z)×2(3)ch(z)dz=2{83sh2(z)+2t11}dz=163sh2(z)dz+(4t12)z=163ch(2z)12dz+(4t12)z=83ch(2z)dz83z+(4t12)z=43sh(2z)+(4t1832)z+cz=argsh(32u)=ln(32u+1+34u2)andu=tt1
Commented by jagoll last updated on 09/Feb/20
what is argsh sir?  sinh^(−1)  ?
whatisargshsir?sinh1?
Commented by Rio Michael last updated on 09/Feb/20
sure
sure
Commented by msup trace by abdo last updated on 09/Feb/20
yes
yes
Answered by Rio Michael last updated on 09/Feb/20
let u = e^(x )  ⇒ du = e^x dx  ∫((2e^(2x) −e^x )/( (√(3e^(2x) −6e^x −1)))) dx = ∫((2e^x −1)/( (√(3e^(2x) −6e^x −1)))) e^x dx                                          = ∫((2u−1)/( (√(3u^2 −6u−1)))) du                                          = ∫((2u)/( (√(3u^2 −6u−1))))du(please help me evaluate this)  − ∫(1/( (√(3u^2 −6u−1)))) du = −∫(1/( (√(3(u−1)^2 −4)))) du =− (1/( (√3))) arcosh(((u−1)/2)) + k
letu=exdu=exdx2e2xex3e2x6ex1dx=2ex13e2x6ex1exdx=2u13u26u1du=2u3u26u1du(pleasehelpmeevaluatethis)13u26u1du=13(u1)24du=13arcosh(u12)+k

Leave a Reply

Your email address will not be published. Required fields are marked *