Question Number 61801 by aliesam last updated on 08/Jun/19
$$\underset{\mathrm{2}\pi} {\overset{\mathrm{4}\pi} {\int}}\sqrt{\mathrm{1}−{cos}\left({x}\right)}\:{dx} \\ $$
Commented by MJS last updated on 08/Jun/19
$$\sqrt{\mathrm{1}−\mathrm{cos}\:{x}}=\sqrt{\mathrm{2}}\mathrm{sin}\:\frac{{x}}{\mathrm{2}} \\ $$$$\mathrm{now}\:\mathrm{it}'\mathrm{s}\:\mathrm{easy} \\ $$
Commented by maxmathsup by imad last updated on 09/Jun/19
$${let}\:{A}\:=\int_{\mathrm{2}\pi} ^{\mathrm{4}\pi} \sqrt{\mathrm{1}−{cosx}}{dx}\:\:{cha}\mathrm{7}{gement}\:{x}\:=\mathrm{2}\pi\:+{t}\:{give} \\ $$$${A}\:=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \sqrt{\mathrm{1}−{cost}}{dt}\:=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \sqrt{\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{{t}}{\mathrm{2}}\right)}{dt}\:=\sqrt{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{2}\pi} \mid{sin}\left(\frac{{t}}{\mathrm{2}}\right)\mid{dt} \\ $$$$\mathrm{0}\leqslant\frac{{t}}{\mathrm{2}}\leqslant\pi\:\Rightarrow{sin}\left(\frac{{t}}{\mathrm{2}}\right)\geqslant\mathrm{0}\:\Rightarrow{A}\:=\sqrt{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:{sin}\left(\frac{{t}}{\mathrm{2}}\right)\:=\sqrt{\mathrm{2}}\left[−\mathrm{2}{cos}\left(\frac{{t}}{\mathrm{2}}\right)\right]_{\mathrm{0}} ^{\mathrm{2}\pi} \\ $$$$=−\mathrm{2}\sqrt{\mathrm{2}}\left\{\:{cos}\left(\pi\right)−{cos}\left(\mathrm{0}\right)\right\}\:=−\mathrm{2}\sqrt{\mathrm{2}}\left(−\mathrm{2}\right)\:=\mathrm{4}\sqrt{\mathrm{2}} \\ $$$${A}\:=\mathrm{4}\sqrt{\mathrm{2}}. \\ $$
Commented by aliesam last updated on 09/Jun/19
$${thanks}\:{sir}\: \\ $$