Menu Close

2pi-4pi-1-cos-x-dx-




Question Number 61801 by aliesam last updated on 08/Jun/19
∫_(2π) ^(4π) (√(1−cos(x))) dx
4π2π1cos(x)dx
Commented by MJS last updated on 08/Jun/19
(√(1−cos x))=(√2)sin (x/2)  now it′s easy
1cosx=2sinx2nowitseasy
Commented by maxmathsup by imad last updated on 09/Jun/19
let A =∫_(2π) ^(4π) (√(1−cosx))dx  cha7gement x =2π +t give  A =∫_0 ^(2π) (√(1−cost))dt =∫_0 ^(2π) (√(2sin^2 ((t/2))))dt =(√2)∫_0 ^(2π) ∣sin((t/2))∣dt  0≤(t/2)≤π ⇒sin((t/2))≥0 ⇒A =(√2)∫_0 ^(2π)  sin((t/2)) =(√2)[−2cos((t/2))]_0 ^(2π)   =−2(√2){ cos(π)−cos(0)} =−2(√2)(−2) =4(√2)  A =4(√2).
letA=2π4π1cosxdxcha7gementx=2π+tgiveA=02π1costdt=02π2sin2(t2)dt=202πsin(t2)dt0t2πsin(t2)0A=202πsin(t2)=2[2cos(t2)]02π=22{cos(π)cos(0)}=22(2)=42A=42.
Commented by aliesam last updated on 09/Jun/19
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *