2pi-4pi-1-cos-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 61801 by aliesam last updated on 08/Jun/19 ∫4π2π1−cos(x)dx Commented by MJS last updated on 08/Jun/19 1−cosx=2sinx2nowit′seasy Commented by maxmathsup by imad last updated on 09/Jun/19 letA=∫2π4π1−cosxdxcha7gementx=2π+tgiveA=∫02π1−costdt=∫02π2sin2(t2)dt=2∫02π∣sin(t2)∣dt0⩽t2⩽π⇒sin(t2)⩾0⇒A=2∫02πsin(t2)=2[−2cos(t2)]02π=−22{cos(π)−cos(0)}=−22(−2)=42A=42. Commented by aliesam last updated on 09/Jun/19 thankssir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-a-b-c-be-integers-such-as-0-lt-a-2-b-2-abc-lt-c-prove-that-a-2-b-2-abc-is-an-integer-Next Next post: Question-127336 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.