Menu Close

2sin-17x-3-cos-5x-sin-5x-0-x-




Question Number 144828 by mathlove last updated on 29/Jun/21
2sin 17x+(√3) cos 5x+sin 5x=0  x=?
$$\mathrm{2sin}\:\mathrm{17}{x}+\sqrt{\mathrm{3}}\:\mathrm{cos}\:\mathrm{5}{x}+\mathrm{sin}\:\mathrm{5}{x}=\mathrm{0} \\ $$$${x}=? \\ $$
Answered by liberty last updated on 30/Jun/21
2sin 17x + 2cos (5x−(π/6))=0  ⇒cos (5x−(π/6))=−sin 17x  ⇒cos (5x−(π/6))=cos ((π/2)+17x)  ⇒2kπ ±( 5x−(π/6))=(π/2)+17x  ⇒2kπ∓(π/6)−(π/2)=17x ∓ 5x  ⇒2kπ−((2π)/3)= 17x ∓ 5x  (case 1)2kπ−((2π)/3)= 12x  ⇒x = ((kπ)/6)−(π/(18))  (case 2) 2kπ−((2π)/3)= 22x  ⇒x = ((kπ)/(11))−(π/(33)).  (case 3) 2kπ−(π/3)=12x  ⇒x=((kπ)/6)−(π/(36))  (case 4) 2kπ−(π/3)=22x  ⇒x=((kπ)/(11))−(π/(66))
$$\mathrm{2sin}\:\mathrm{17x}\:+\:\mathrm{2cos}\:\left(\mathrm{5x}−\frac{\pi}{\mathrm{6}}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{cos}\:\left(\mathrm{5x}−\frac{\pi}{\mathrm{6}}\right)=−\mathrm{sin}\:\mathrm{17x} \\ $$$$\Rightarrow\mathrm{cos}\:\left(\mathrm{5x}−\frac{\pi}{\mathrm{6}}\right)=\mathrm{cos}\:\left(\frac{\pi}{\mathrm{2}}+\mathrm{17x}\right) \\ $$$$\Rightarrow\mathrm{2k}\pi\:\pm\left(\:\mathrm{5x}−\frac{\pi}{\mathrm{6}}\right)=\frac{\pi}{\mathrm{2}}+\mathrm{17x} \\ $$$$\Rightarrow\mathrm{2k}\pi\mp\frac{\pi}{\mathrm{6}}−\frac{\pi}{\mathrm{2}}=\mathrm{17x}\:\mp\:\mathrm{5x} \\ $$$$\Rightarrow\mathrm{2k}\pi−\frac{\mathrm{2}\pi}{\mathrm{3}}=\:\mathrm{17x}\:\mp\:\mathrm{5x} \\ $$$$\left(\mathrm{case}\:\mathrm{1}\right)\mathrm{2k}\pi−\frac{\mathrm{2}\pi}{\mathrm{3}}=\:\mathrm{12x} \\ $$$$\Rightarrow\mathrm{x}\:=\:\frac{\mathrm{k}\pi}{\mathrm{6}}−\frac{\pi}{\mathrm{18}} \\ $$$$\left(\mathrm{case}\:\mathrm{2}\right)\:\mathrm{2k}\pi−\frac{\mathrm{2}\pi}{\mathrm{3}}=\:\mathrm{22x} \\ $$$$\Rightarrow\mathrm{x}\:=\:\frac{\mathrm{k}\pi}{\mathrm{11}}−\frac{\pi}{\mathrm{33}}. \\ $$$$\left(\mathrm{case}\:\mathrm{3}\right)\:\mathrm{2k}\pi−\frac{\pi}{\mathrm{3}}=\mathrm{12x} \\ $$$$\Rightarrow\mathrm{x}=\frac{\mathrm{k}\pi}{\mathrm{6}}−\frac{\pi}{\mathrm{36}} \\ $$$$\left(\mathrm{case}\:\mathrm{4}\right)\:\mathrm{2k}\pi−\frac{\pi}{\mathrm{3}}=\mathrm{22x} \\ $$$$\Rightarrow\mathrm{x}=\frac{\mathrm{k}\pi}{\mathrm{11}}−\frac{\pi}{\mathrm{66}}\: \\ $$
Commented by liberty last updated on 30/Jun/21
o yes. thanks
$$\mathrm{o}\:\mathrm{yes}.\:\mathrm{thanks} \\ $$
Answered by ajfour last updated on 29/Jun/21
sin 17x+sin (5x+(π/3))=0  ⇒  5x+(π/3)=nπ−(−1)^n (17)x  ⇒ x=((nπ−(π/3))/(5+17(−1)^n ))
$$\mathrm{sin}\:\mathrm{17}{x}+\mathrm{sin}\:\left(\mathrm{5}{x}+\frac{\pi}{\mathrm{3}}\right)=\mathrm{0} \\ $$$$\Rightarrow\:\:\mathrm{5}{x}+\frac{\pi}{\mathrm{3}}={n}\pi−\left(−\mathrm{1}\right)^{{n}} \left(\mathrm{17}\right){x} \\ $$$$\Rightarrow\:{x}=\frac{{n}\pi−\frac{\pi}{\mathrm{3}}}{\mathrm{5}+\mathrm{17}\left(−\mathrm{1}\right)^{{n}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *