Menu Close

2sin-2x-4sin-2-x-7cos-2x-with-pi-2-lt-x-lt-pi-find-sin-2x-




Question Number 104576 by bemath last updated on 22/Jul/20
2sin 2x −4sin^2 x = 7cos 2x  with (π/2)< x < π   find sin 2x
2sin2x4sin2x=7cos2xwithπ2<x<πfindsin2x
Commented by bemath last updated on 22/Jul/20
thank you both
thankyouboth
Answered by bobhans last updated on 22/Jul/20
⇔4sin x cos x−4sin^2 x = 7(cos^2 x−sin^2 x)  4sin x (cos x−sin x) = 7(cos x−sin x)(cos x+sin x)  ⇒(sin x−cos x){4sin x−7cos x−7sin x)=0   { ((sin x=cos x (rejected))),((7cos x = −3sin x )) :}  tan x = −(7/3) → { ((sin x = (7/( (√(58)))))),((cos x = −(3/( (√(58)))))) :}  sin 2x = 2×(7/( (√(58)))) ×−(3/( (√(58)))) = −((21)/(29)) ★
4sinxcosx4sin2x=7(cos2xsin2x)4sinx(cosxsinx)=7(cosxsinx)(cosx+sinx)(sinxcosx){4sinx7cosx7sinx)=0{sinx=cosx(rejected)7cosx=3sinxtanx=73{sinx=758cosx=358sin2x=2×758×358=2129
Answered by OlafThorendsen last updated on 22/Jul/20
2sin2x−4((1−cos2x)/2) = 7cos2x  2sin2x−2 = 5cos2x  ⇒ 4sin^2 2x−8sin2x+4 = 25cos^2 2x  4sin^2 2x−8sin2x+4 = 25−25sin^2 2x  29sin^2 x−8sin2x−21 = 0  (sin2x−1)(29sin2x+21) = 0  sin2x = 1 ⇔ x = (π/4)+kπ, k∈Z  impossible, (π/2)<x<π  sin2x = −((21)/(29))  is a solution.
2sin2x41cos2x2=7cos2x2sin2x2=5cos2x4sin22x8sin2x+4=25cos22x4sin22x8sin2x+4=2525sin22x29sin2x8sin2x21=0(sin2x1)(29sin2x+21)=0sin2x=1x=π4+kπ,kZimpossible,π2<x<πsin2x=2129isasolution.
Answered by Dwaipayan Shikari last updated on 22/Jul/20
2sin2x−4sin^2 x=7cos^2 x−7sin^2 x  −7cos^2 x+4sinxcosx+3sin^2 x=0  −7cos^2 x+7sinxcosx−3sinxcosx+3sin^2 x=0  −7cosx(cosx−sinx)−3sinx(cosx−sinx)=0  (cosx−sinx)(7cosx+3sinx)=0  cosx=sinx  tanx=1  ((2tanx)/(tan^2 x+1))=sin2x=1(But it is not the solution)  7cosx=−3sinx  tanx=((−7)/3)  ((2tanx)/(tan^2 x+1))=(((−14)/3)/(((49)/9)+1))=((−14.3)/(58))=−((21)/(29))
2sin2x4sin2x=7cos2x7sin2x7cos2x+4sinxcosx+3sin2x=07cos2x+7sinxcosx3sinxcosx+3sin2x=07cosx(cosxsinx)3sinx(cosxsinx)=0(cosxsinx)(7cosx+3sinx)=0cosx=sinxtanx=12tanxtan2x+1=sin2x=1(Butitisnotthesolution)7cosx=3sinxtanx=732tanxtan2x+1=143499+1=14.358=2129
Answered by ajfour last updated on 22/Jul/20
let  cos 2x=t  ⇒ 4(1−t^2 )=(7t+2−2t)^2   4−4t^2 =25t^2 +20t+4  ⇒  29t^2 +20t=0  ⇒  t=−((20)/(29)) ,  sin 2x = −(√(1−t^2 ))     sin 2x = −((√(49×9))/(29)) = −((21)/(29)) .
letcos2x=t4(1t2)=(7t+22t)244t2=25t2+20t+429t2+20t=0t=2029,sin2x=1t2sin2x=49×929=2129.

Leave a Reply

Your email address will not be published. Required fields are marked *