Menu Close

2sinx-3cosx-3sinx-4cosx-dx-




Question Number 23796 by tapan das last updated on 06/Nov/17
∫((2sinx+3cosx)/(3sinx+4cosx)) dx
2sinx+3cosx3sinx+4cosxdx
Answered by ajfour last updated on 06/Nov/17
2sin x+3cos x=A(3sin x+4cos x)                               +B(3cos x−4sin x)  ⇒ 3A−4B=2  and        4A+3B=3  ⇒  A=((18)/(25))  , B=(1/(25))  ; So  ∫((2sin x+3cos x)/(3sin x+4cos x))dx =((18)/(25))∫dx+                                     +(1/(25))∫((3cos x−4sin x)/(3sin x+4cos x))dx     =((18x)/(25))+(1/(25))ln ∣3sin x+4cos x∣+C .
2sinx+3cosx=A(3sinx+4cosx)+B(3cosx4sinx)3A4B=2and4A+3B=3A=1825,B=125;So2sinx+3cosx3sinx+4cosxdx=1825dx++1253cosx4sinx3sinx+4cosxdx=18x25+125ln3sinx+4cosx+C.

Leave a Reply

Your email address will not be published. Required fields are marked *