Question Number 89344 by jagoll last updated on 17/Apr/20
$$\left(\mathrm{2}{x}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{8}\sqrt{\mathrm{2}{xy}}\:=\:\mathrm{4} \\ $$$$\mathrm{4}{y}−\sqrt{\mathrm{8}{xy}−\mathrm{1}}\:=\:\mathrm{1} \\ $$
Commented by john santu last updated on 17/Apr/20
$$\mathrm{8}{xy}−\mathrm{1}\:=\:\mathrm{16}{y}^{\mathrm{2}} −\mathrm{8}{y}+\mathrm{1} \\ $$$$\mathrm{8}{xy}\:=\:\mathrm{16}{y}^{\mathrm{2}} −\mathrm{8}{y}+\mathrm{2} \\ $$$$\mathrm{2}{x}\:=\:\frac{\mathrm{16}{y}^{\mathrm{2}} −\mathrm{8}{y}+\mathrm{2}}{\mathrm{4}{y}}\:\Rightarrow\mathrm{2}{xy}\:=\:\frac{\mathrm{16}{y}^{\mathrm{2}} −\mathrm{8}{y}+\mathrm{2}}{\mathrm{4}} \\ $$$$\mathrm{2}{x}−\mathrm{1}\:=\:\frac{\mathrm{16}{y}^{\mathrm{2}} −\mathrm{12}{y}+\mathrm{2}}{\mathrm{4}{y}} \\ $$$$\left(\frac{\mathrm{16}{y}^{\mathrm{2}} −\mathrm{12}{y}+\mathrm{2}}{\mathrm{4}{y}}\right)^{\mathrm{2}} +\mathrm{4}\sqrt{\mathrm{16}{y}^{\mathrm{2}} −\mathrm{8}{y}+\mathrm{2}}\:=\:\mathrm{4} \\ $$$${let}\:\sqrt{\mathrm{16}{y}^{\mathrm{2}} −\mathrm{8}{y}+\mathrm{2}}\:=\:{t} \\ $$$$ \\ $$$$ \\ $$
Commented by john santu last updated on 17/Apr/20
$${then}\:{we}\:{get}\:{x}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\wedge\:{y}\:=\:\frac{\mathrm{1}}{\mathrm{4}} \\ $$
Commented by MJS last updated on 17/Apr/20
$$\mathrm{8}{xy}−\mathrm{1}\geqslant\mathrm{0}\:\Rightarrow\:{xy}\geqslant\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\mathrm{8}\sqrt{\mathrm{2}{xy}}=\mathrm{4}−\left(\mathrm{2}{x}−\mathrm{1}\right)^{\mathrm{2}} \:\Rightarrow\:\mathrm{4}−\left(\mathrm{2}{x}−\mathrm{1}\right)^{\mathrm{2}} \geqslant\mathrm{0}\:\Rightarrow \\ $$$$\Rightarrow\:−\frac{\mathrm{1}}{\mathrm{2}}\leqslant{x}\leqslant\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\sqrt{\mathrm{8}{xy}−\mathrm{1}}=\mathrm{4}{y}−\mathrm{1}\:\Rightarrow\:\mathrm{4}{y}−\mathrm{1}\geqslant\mathrm{0}\:\Rightarrow\:{y}\geqslant\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$ \\ $$$${xy}\geqslant\frac{\mathrm{1}}{\mathrm{8}}\wedge{y}\geqslant\frac{\mathrm{1}}{\mathrm{4}}\wedge−\frac{\mathrm{1}}{\mathrm{2}}\leqslant{x}\leqslant\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{0}\leqslant{x}\leqslant\frac{\mathrm{1}}{\mathrm{2}}\wedge{y}\geqslant\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\mathrm{now}\:\mathrm{I}\:\mathrm{first}\:\mathrm{tried}\:\mathrm{the}\:\mathrm{borders}… \\ $$
Commented by john santu last updated on 17/Apr/20
$${what}\:{the}\:{exact}\:{solution}\:{sir}? \\ $$
Commented by john santu last updated on 17/Apr/20
$${if}\:{x}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\wedge\:{y}\:=\:\mathrm{1}\: \\ $$$$\Rightarrow\left(\mathrm{2}.\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{8}\sqrt{\mathrm{2}.\frac{\mathrm{1}}{\mathrm{2}}.\mathrm{1}}\:\neq\:\mathrm{4}\:{sir} \\ $$
Commented by MJS last updated on 17/Apr/20
$$\mathrm{your}\:\mathrm{solution}\:\mathrm{is}\:\mathrm{ok},\:\mathrm{I}\:\mathrm{wanted}\:\mathrm{to}\:\mathrm{say}\:\mathrm{that}\:\mathrm{I} \\ $$$$\mathrm{found}\:\mathrm{the}\:\mathrm{same}\:\mathrm{by}\:\mathrm{trying}\:\mathrm{the}\:\mathrm{borders}\:\mathrm{for} \\ $$$${x}\:\mathrm{and}\:{y}:\:{x}=\frac{\mathrm{1}}{\mathrm{2}}\wedge{y}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$