Question Number 86128 by M±th+et£s last updated on 27/Mar/20
$$\lfloor\mathrm{2}{x}−\frac{\mathrm{1}}{\mathrm{2}}\rfloor=\lfloor\mid{x}\mid−\frac{\mathrm{1}}{\mathrm{2}}\rfloor=\mathrm{2}{x}−\mathrm{2} \\ $$
Answered by mr W last updated on 27/Mar/20
$$\lfloor\mathrm{2}{x}−\frac{\mathrm{1}}{\mathrm{2}}\rfloor−\lfloor\mid{x}\mid−\frac{\mathrm{1}}{\mathrm{2}}\rfloor=\mathrm{2}{x}−\mathrm{2} \\ $$$$\lfloor\mathrm{2}{x}−\frac{\mathrm{1}}{\mathrm{2}}\rfloor−\lfloor\mid{x}\mid−\frac{\mathrm{1}}{\mathrm{2}}\rfloor=\mathrm{2}{x}−\mathrm{2}={n}=\begin{cases}{\mathrm{2}{k}}\\{\mathrm{2}{k}+\mathrm{1}}\end{cases} \\ $$$$\Rightarrow{x}=\frac{{n}}{\mathrm{2}}+\mathrm{1}=\begin{cases}{{k}+\mathrm{1}}\\{{k}+\frac{\mathrm{3}}{\mathrm{2}}}\end{cases} \\ $$$${case}\:{n}\geqslant−\mathrm{2}\:{or}\:{k}\geqslant−\mathrm{1} \\ $$$${x}\geqslant\mathrm{0} \\ $$$$\lfloor\mathrm{2}{x}−\frac{\mathrm{1}}{\mathrm{2}}\rfloor=\lfloor{n}+\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\rfloor={n}+\mathrm{1}=\begin{cases}{\mathrm{2}{k}+\mathrm{1}}\\{\mathrm{2}{k}+\mathrm{2}}\end{cases} \\ $$$$\lfloor\mid{x}\mid−\frac{\mathrm{1}}{\mathrm{2}}\rfloor=\lfloor\frac{{n}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\rfloor=\begin{cases}{{k}}\\{{k}+\mathrm{1}}\end{cases} \\ $$$$\mathrm{2}{k}+\mathrm{1}−{k}=\mathrm{2}{k} \\ $$$$\Rightarrow{k}=\mathrm{1}\:\Rightarrow{n}=\mathrm{2}\:\Rightarrow{x}=\mathrm{2} \\ $$$$\mathrm{2}{k}+\mathrm{2}−{k}−\mathrm{1}=\mathrm{2}{k}+\mathrm{1} \\ $$$$\Rightarrow{k}=\mathrm{0}\:\Rightarrow{n}=\mathrm{1}\:\Rightarrow\:{x}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$ \\ $$$${case}\:{n}<−\mathrm{2}\:{or}\:{k}<−\mathrm{1} \\ $$$${x}<\mathrm{0} \\ $$$$\lfloor\mathrm{2}{x}−\frac{\mathrm{1}}{\mathrm{2}}\rfloor=\lfloor{n}+\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\rfloor={n}+\mathrm{1}=\begin{cases}{\mathrm{2}{k}+\mathrm{1}}\\{\mathrm{2}{k}+\mathrm{2}}\end{cases} \\ $$$$\lfloor\mid{x}\mid−\frac{\mathrm{1}}{\mathrm{2}}\rfloor=\lfloor−\frac{{n}}{\mathrm{2}}−\mathrm{2}+\frac{\mathrm{1}}{\mathrm{2}}\rfloor=\begin{cases}{−{k}−\mathrm{2}}\\{−{k}−\mathrm{2}}\end{cases} \\ $$$$\mathrm{2}{k}+\mathrm{1}+{k}+\mathrm{2}=\mathrm{2}{k} \\ $$$$\Rightarrow{k}=−\mathrm{3}\:\Rightarrow{n}=−\mathrm{6}\:\Rightarrow{x}=−\mathrm{2} \\ $$$$\mathrm{2}{k}+\mathrm{2}+{k}+\mathrm{2}=\mathrm{2}{k}+\mathrm{1} \\ $$$$\Rightarrow{k}=−\mathrm{3}\:\Rightarrow{n}=−\mathrm{5}\:\Rightarrow{x}=−\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$ \\ $$$${summary}\:{of}\:{solutions}: \\ $$$${x}=−\mathrm{2},\:−\frac{\mathrm{3}}{\mathrm{2}},\:\frac{\mathrm{3}}{\mathrm{2}},\:\mathrm{2} \\ $$
Commented by M±th+et£s last updated on 27/Mar/20
$${god}\:{bless}\:{you}\:{sir}.\:{but}\:{i}\:{think}\:{that}\:{x}=−\frac{\mathrm{3}}{\mathrm{2}}\:\:{is}\:{a}\:{solution}\:{too} \\ $$
Commented by mr W last updated on 27/Mar/20
$${yes}.\:{i}\:{overlooked}\:{a}\:{value}. \\ $$
Commented by M±th+et£s last updated on 27/Mar/20
$${nice}\:{solution}\:{sir}\:{thank}\:{you} \\ $$