Menu Close

2x-1-5x-2-x-2-dx-




Question Number 37028 by nishant last updated on 08/Jun/18
∫((2x−1)/(5x^2 −x+2)) dx  =  ?
$$\int\frac{\mathrm{2}{x}−\mathrm{1}}{\mathrm{5}{x}^{\mathrm{2}} −{x}+\mathrm{2}}\:{dx}\:\:=\:\:? \\ $$
Answered by ajfour last updated on 08/Jun/18
I=(1/5)∫((10x−1)/(5x^2 −x+2))dx −(4/(25))∫(dx/((x−(1/(10)))^2 +(2/5)−(1/(100))))    =(1/5)ln ∣5x^2 −x+2∣−(4/(25))∫(dx/((x−(1/(10)))^2 +(((√(39))/(10)))^2 ))    =(1/5)ln ∣5x^2 −x+2∣−(4/(25))×((10)/( (√(39))))tan^(−1) (((10x−1)/( (√(39)))))+c .
$${I}=\frac{\mathrm{1}}{\mathrm{5}}\int\frac{\mathrm{10}{x}−\mathrm{1}}{\mathrm{5}{x}^{\mathrm{2}} −{x}+\mathrm{2}}{dx}\:−\frac{\mathrm{4}}{\mathrm{25}}\int\frac{{dx}}{\left({x}−\frac{\mathrm{1}}{\mathrm{10}}\right)^{\mathrm{2}} +\frac{\mathrm{2}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{100}}} \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{5}}\mathrm{ln}\:\mid\mathrm{5}{x}^{\mathrm{2}} −{x}+\mathrm{2}\mid−\frac{\mathrm{4}}{\mathrm{25}}\int\frac{{dx}}{\left({x}−\frac{\mathrm{1}}{\mathrm{10}}\right)^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{39}}}{\mathrm{10}}\right)^{\mathrm{2}} } \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{5}}\mathrm{ln}\:\mid\mathrm{5}{x}^{\mathrm{2}} −{x}+\mathrm{2}\mid−\frac{\mathrm{4}}{\mathrm{25}}×\frac{\mathrm{10}}{\:\sqrt{\mathrm{39}}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{10}{x}−\mathrm{1}}{\:\sqrt{\mathrm{39}}}\right)+{c}\:. \\ $$$$ \\ $$
Commented by nishant last updated on 08/Jun/18
thanks sir.
$${thanks}\:{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *