Menu Close

2x-1-x-2-4x-1-3-2-dx-




Question Number 36545 by tanmay.chaudhury50@gmail.com last updated on 03/Jun/18
∫((2x+1)/((x^2 +4x+1)^(3/2) ))dx
2x+1(x2+4x+1)32dx
Commented by MJS last updated on 03/Jun/18
...I just gave it a try because the “poper”   way looked rather complicated...
Ijustgaveitatrybecausethepoperwaylookedrathercomplicated
Commented by MJS last updated on 03/Jun/18
this looks like it′s going to be  ((ax+b)/( (√(x^2 +4x+1))))    (((ax+b)/( (√(x^2 +4x+1)))))′=  =(((2a−b)x+(a−2b))/((x^2 +4x+1)^(3/2) ))  2a−b=2  a−2b=1  a=1  b=0    ∫((2x+1)/((x^2 +4x+1)^(3/2) ))dx=(x/( (√(x^2 +4x+1))))+C
thislookslikeitsgoingtobeax+bx2+4x+1(ax+bx2+4x+1)=Missing \left or extra \right2ab=2a2b=1a=1b=02x+1(x2+4x+1)32dx=xx2+4x+1+C
Commented by tanmay.chaudhury50@gmail.com last updated on 03/Jun/18
excellent sir...
excellentsir
Commented by ajfour last updated on 03/Jun/18
couldn′t follow...??
couldntfollow??
Commented by tanmay.chaudhury50@gmail.com last updated on 03/Jun/18
sir mjs assumed the results of the intregal  as ((ax+b)/( (√(x^2 +4x+1))  ))then differentiated and equatex  and gotthe results
sirmjsassumedtheresultsoftheintregalasax+bx2+4x+1thendifferentiatedandequatexandgottheresults
Commented by ajfour last updated on 03/Jun/18
thanks, i see.
thanks,isee.
Answered by ajfour last updated on 03/Jun/18
=∫((2x+1)/([(x+2)^2 −((√3))^2 ]^(3/2) ))dx  let  x+2=(√3)sec θ  ⇒     dx=(√3)sec θtan θdθ  I=∫((2(√3)sec θ−3)/(3(√3)sec^3 θ))dθ     =(2/3)∫cos^2 θdθ−(1/( (√3)))∫cos^3 θdθ    =(1/3)(θ+((sin 2θ)/2))−(1/(4(√3)))∫(cos 3θ+3cos θ)dθ   =(θ/3)+((sin 2θ)/6)−((sin 3θ)/(12(√3)))−((√3)/4)sin θ+c .
=2x+1[(x+2)2(3)2]3/2dxletx+2=3secθdx=3secθtanθdθI=23secθ333sec3θdθ=23cos2θdθ13cos3θdθ=13(θ+sin2θ2)143(cos3θ+3cosθ)dθ=θ3+sin2θ6sin3θ12334sinθ+c.
Answered by MJS last updated on 03/Jun/18
∫((2x+1)/((x^2 +4x+1)^(3/2) ))dx=∫((2x+4)/((x^2 +4x+1)^(3/2) ))dx−3∫(dx/((x^2 +4x+1)^(3/2) ))=               [((∫((2x+4)/((x^2 +4x+1)^(3/2) ))dx=)),((          [t=x^2 +4x+1 → dx=(dt/(2x+4))])),((=∫(dt/t^(3/2) )=−(2/( (√t)))=−(2/( (√(x^2 +4x+1)))))) ]               [((∫(dx/((x^2 +4x+1)^(3/2) ))=∫(dx/(((x+2)^2 −3)^(3/2) ))=)),((          [u=x+2 → dx=du])),((=∫(du/((u^2 −3)^(3/2) ))=)),((          [v=(√3)sec v → du=(√3)sec v tan v dv])),((=∫(((√3)sec v tan v)/((3sec^2  v−3)^(3/2) ))dv=(1/3)∫((sec v)/(tan^2  v))dv=(1/3)∫((cos v)/(sin^2  v))dv=)),((          [w=sin v → dv=(dw/(cos v))])),((=(1/3)∫(dw/w^2 )=−(1/(3w))=−(1/(3sin v))=−(u/(3(√(u^2 −3))))=)),((=−((x+2)/(3(√(x^2 +4x+1)))))) ]    =(x/( (√(x^2 +4x+1))))+C
2x+1(x2+4x+1)32dx=2x+4(x2+4x+1)32dx3dx(x2+4x+1)32=[2x+4(x2+4x+1)32dx=[t=x2+4x+1dx=dt2x+4]=dtt32=2t=2x2+4x+1][dx(x2+4x+1)32=dx((x+2)23)32=[u=x+2dx=du]=du(u23)32=[v=3secvdu=3secvtanvdv]=3secvtanv(3sec2v3)32dv=13secvtan2vdv=13cosvsin2vdv=[w=sinvdv=dwcosv]=13dww2=13w=13sinv=u3u23==x+23x2+4x+1]=xx2+4x+1+C

Leave a Reply

Your email address will not be published. Required fields are marked *