Question Number 36545 by tanmay.chaudhury50@gmail.com last updated on 03/Jun/18

Commented by MJS last updated on 03/Jun/18

Commented by MJS last updated on 03/Jun/18

Commented by tanmay.chaudhury50@gmail.com last updated on 03/Jun/18

Commented by ajfour last updated on 03/Jun/18

Commented by tanmay.chaudhury50@gmail.com last updated on 03/Jun/18

Commented by ajfour last updated on 03/Jun/18

Answered by ajfour last updated on 03/Jun/18
![=∫((2x+1)/([(x+2)^2 −((√3))^2 ]^(3/2) ))dx let x+2=(√3)sec θ ⇒ dx=(√3)sec θtan θdθ I=∫((2(√3)sec θ−3)/(3(√3)sec^3 θ))dθ =(2/3)∫cos^2 θdθ−(1/( (√3)))∫cos^3 θdθ =(1/3)(θ+((sin 2θ)/2))−(1/(4(√3)))∫(cos 3θ+3cos θ)dθ =(θ/3)+((sin 2θ)/6)−((sin 3θ)/(12(√3)))−((√3)/4)sin θ+c .](https://www.tinkutara.com/question/Q36562.png)
Answered by MJS last updated on 03/Jun/18
![∫((2x+1)/((x^2 +4x+1)^(3/2) ))dx=∫((2x+4)/((x^2 +4x+1)^(3/2) ))dx−3∫(dx/((x^2 +4x+1)^(3/2) ))= [((∫((2x+4)/((x^2 +4x+1)^(3/2) ))dx=)),(( [t=x^2 +4x+1 → dx=(dt/(2x+4))])),((=∫(dt/t^(3/2) )=−(2/( (√t)))=−(2/( (√(x^2 +4x+1)))))) ] [((∫(dx/((x^2 +4x+1)^(3/2) ))=∫(dx/(((x+2)^2 −3)^(3/2) ))=)),(( [u=x+2 → dx=du])),((=∫(du/((u^2 −3)^(3/2) ))=)),(( [v=(√3)sec v → du=(√3)sec v tan v dv])),((=∫(((√3)sec v tan v)/((3sec^2 v−3)^(3/2) ))dv=(1/3)∫((sec v)/(tan^2 v))dv=(1/3)∫((cos v)/(sin^2 v))dv=)),(( [w=sin v → dv=(dw/(cos v))])),((=(1/3)∫(dw/w^2 )=−(1/(3w))=−(1/(3sin v))=−(u/(3(√(u^2 −3))))=)),((=−((x+2)/(3(√(x^2 +4x+1)))))) ] =(x/( (√(x^2 +4x+1))))+C](https://www.tinkutara.com/question/Q36636.png)