Menu Close

2x-2-3x-3-x-1-x-2-2x-5-dx-




Question Number 125440 by bramlexs22 last updated on 11/Dec/20
           ∫((2x^2 −3x−3)/((x−1)(x^2 −2x+5))) dx
2x23x3(x1)(x22x+5)dx
Answered by Ar Brandon last updated on 11/Dec/20
f(x)=((2x^2 −3x−3)/((x−1)(x^2 −2x+5)))=(a/(x−1))+((bx+c)/(x^2 −2x+5))          =((a(x^2 −2x+5)+(bx+c)(x−1))/((x−1)(x^2 −2x+5)))  set x−1=0 ⇒ −4=4a ⇒ a=−1  Comparing coefficients of x^2  we get;  a+b=2 ⇒ b=3  Comparing constant terms we get;  5a−c=−3 ⇒ c=−2  ⇒f(x)=((−1)/(x−1))+((3x−2)/(x^2 −2x+5))  3x−2=λ{(d/dx)(x^2 −2x+5)}+μ=λ(2x−2)+μ  Comparing coefs 2λ=3 ⇒ λ=(3/2), μ−2λ=−2 ⇒ μ=1  3x−2=(3/2)(2x−2)+1  ⇒∫f(x)dx=∫{((−1)/(x−1))+(3/2)∙((2x−2)/(x^2 −2x+5))+(1/(x^2 −2x+5))}dx
f(x)=2x23x3(x1)(x22x+5)=ax1+bx+cx22x+5=a(x22x+5)+(bx+c)(x1)(x1)(x22x+5)setx1=04=4aa=1Comparingcoefficientsofx2weget;a+b=2b=3Comparingconstanttermsweget;5ac=3c=2f(x)=1x1+3x2x22x+53x2=λ{ddx(x22x+5)}+μ=λ(2x2)+μComparingcoefs2λ=3λ=32,μ2λ=2μ=13x2=32(2x2)+1f(x)dx={1x1+322x2x22x+5+1x22x+5}dx
Commented by Dwaipayan Shikari last updated on 11/Dec/20
∫−(1/(x−1))+(3/2)∫((2x−2)/(x^2 −2x+5))+∫(1/(x^2 −2x+5))dx  =(3/2)log(x^2 −2x+5)−log(x−1)+(1/2)tan^(−1) ((x−1)/2)+C
1x1+322x2x22x+5+1x22x+5dx=32log(x22x+5)log(x1)+12tan1x12+C
Commented by Ar Brandon last updated on 11/Dec/20
��
Answered by john_santu last updated on 11/Dec/20

Leave a Reply

Your email address will not be published. Required fields are marked *