Menu Close

2x-3-dx-2x-2-4x-3-




Question Number 95547 by Fikret last updated on 25/May/20
∫((2x^3 dx)/(2x^2 −4x+3))=?
2x3dx2x24x+3=?
Answered by MJS last updated on 25/May/20
∫((2x^3 )/(2x^2 −4x+3))dx=∫(x+2+((5x−6)/(2x^2 −4x+3)))dx=  =∫(x+2)dx+(5/4)∫((4x−4)/(2x^2 −4x+3))dx−∫(dx/(2x^2 −4x+3))=  =(1/2)x^2 +2x+(5/4)ln (2x^2 −4x+3) −((√2)/2)arctan ((√2)(x−1)) +C
2x32x24x+3dx=(x+2+5x62x24x+3)dx==(x+2)dx+544x42x24x+3dxdx2x24x+3==12x2+2x+54ln(2x24x+3)22arctan(2(x1))+C
Commented by peter frank last updated on 26/May/20
thank you
thankyou
Answered by 1549442205 last updated on 26/May/20
we have ((2x^3 )/(2x^2 −4x+3))=x+2+((5x−6)/(2x^2 −4x+3))  x+2+((5(x−1)−1)/(2x^2 −4x+3))  x+2+(((5/4)(4x−4)−1)/(2x^2 −4x+3))=x+2+(((5/4)(4x−4))/(2x^2 −4x+3))  −(1/(2x^2 −4x+3)).Hence,denoting I the   integral above we have:  I=(x^2 /2)+2x+(5/4)ln(2x^2 −4x+3)−∫(dx/(2x^2 −4x+3))  J=∫(dx/(2x^2 −4x+3))=(1/2)∫(dx/((x−1)^2 +(((√2)/(2))))^2 ))  =(√2)tan^(−1) [(√2)(x−1)]+C.Thus,  I=(x^2 /2)+2x+(5/4)ln(2x^2 −4x+3)−((√2)/2)tan^(−1) [(√2)(x−1)]+C
wehave2x32x24x+3=x+2+5x62x24x+3x+2+5(x1)12x24x+3x+2+54(4x4)12x24x+3=x+2+54(4x4)2x24x+312x24x+3.Hence,denotingItheintegralabovewehave:I=x22+2x+54ln(2x24x+3)dx2x24x+3J=dx2x24x+3=12dx(x1)2+(22))2=2tan1[2(x1)]+C.Thus,I=x22+2x+54ln(2x24x+3)22tan1[2(x1)]+C

Leave a Reply

Your email address will not be published. Required fields are marked *