Menu Close

2x-3-dx-2x-2-4x-3-




Question Number 95547 by Fikret last updated on 25/May/20
∫((2x^3 dx)/(2x^2 −4x+3))=?
$$\int\frac{\mathrm{2}{x}^{\mathrm{3}} {dx}}{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{3}}=? \\ $$
Answered by MJS last updated on 25/May/20
∫((2x^3 )/(2x^2 −4x+3))dx=∫(x+2+((5x−6)/(2x^2 −4x+3)))dx=  =∫(x+2)dx+(5/4)∫((4x−4)/(2x^2 −4x+3))dx−∫(dx/(2x^2 −4x+3))=  =(1/2)x^2 +2x+(5/4)ln (2x^2 −4x+3) −((√2)/2)arctan ((√2)(x−1)) +C
$$\int\frac{\mathrm{2}{x}^{\mathrm{3}} }{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{3}}{dx}=\int\left({x}+\mathrm{2}+\frac{\mathrm{5}{x}−\mathrm{6}}{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{3}}\right){dx}= \\ $$$$=\int\left({x}+\mathrm{2}\right){dx}+\frac{\mathrm{5}}{\mathrm{4}}\int\frac{\mathrm{4}{x}−\mathrm{4}}{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{3}}{dx}−\int\frac{{dx}}{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{3}}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} +\mathrm{2}{x}+\frac{\mathrm{5}}{\mathrm{4}}\mathrm{ln}\:\left(\mathrm{2}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{3}\right)\:−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{arctan}\:\left(\sqrt{\mathrm{2}}\left({x}−\mathrm{1}\right)\right)\:+{C} \\ $$
Commented by peter frank last updated on 26/May/20
thank you
$$\mathrm{thank}\:\mathrm{you} \\ $$
Answered by 1549442205 last updated on 26/May/20
we have ((2x^3 )/(2x^2 −4x+3))=x+2+((5x−6)/(2x^2 −4x+3))  x+2+((5(x−1)−1)/(2x^2 −4x+3))  x+2+(((5/4)(4x−4)−1)/(2x^2 −4x+3))=x+2+(((5/4)(4x−4))/(2x^2 −4x+3))  −(1/(2x^2 −4x+3)).Hence,denoting I the   integral above we have:  I=(x^2 /2)+2x+(5/4)ln(2x^2 −4x+3)−∫(dx/(2x^2 −4x+3))  J=∫(dx/(2x^2 −4x+3))=(1/2)∫(dx/((x−1)^2 +(((√2)/(2))))^2 ))  =(√2)tan^(−1) [(√2)(x−1)]+C.Thus,  I=(x^2 /2)+2x+(5/4)ln(2x^2 −4x+3)−((√2)/2)tan^(−1) [(√2)(x−1)]+C
$$\mathrm{we}\:\mathrm{have}\:\frac{\mathrm{2x}^{\mathrm{3}} }{\mathrm{2x}^{\mathrm{2}} −\mathrm{4x}+\mathrm{3}}=\mathrm{x}+\mathrm{2}+\frac{\mathrm{5x}−\mathrm{6}}{\mathrm{2x}^{\mathrm{2}} −\mathrm{4x}+\mathrm{3}} \\ $$$$\mathrm{x}+\mathrm{2}+\frac{\mathrm{5}\left(\mathrm{x}−\mathrm{1}\right)−\mathrm{1}}{\mathrm{2x}^{\mathrm{2}} −\mathrm{4x}+\mathrm{3}} \\ $$$$\mathrm{x}+\mathrm{2}+\frac{\frac{\mathrm{5}}{\mathrm{4}}\left(\mathrm{4x}−\mathrm{4}\right)−\mathrm{1}}{\mathrm{2x}^{\mathrm{2}} −\mathrm{4x}+\mathrm{3}}=\mathrm{x}+\mathrm{2}+\frac{\frac{\mathrm{5}}{\mathrm{4}}\left(\mathrm{4x}−\mathrm{4}\right)}{\mathrm{2x}^{\mathrm{2}} −\mathrm{4x}+\mathrm{3}} \\ $$$$−\frac{\mathrm{1}}{\mathrm{2x}^{\mathrm{2}} −\mathrm{4x}+\mathrm{3}}.\mathrm{Hence},\mathrm{denoting}\:\mathrm{I}\:\mathrm{the}\: \\ $$$$\mathrm{integral}\:\mathrm{above}\:\mathrm{we}\:\mathrm{have}: \\ $$$$\mathrm{I}=\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{2x}+\frac{\mathrm{5}}{\mathrm{4}}\mathrm{ln}\left(\mathrm{2x}^{\mathrm{2}} −\mathrm{4x}+\mathrm{3}\right)−\int\frac{\mathrm{dx}}{\mathrm{2x}^{\mathrm{2}} −\mathrm{4x}+\mathrm{3}} \\ $$$$\mathrm{J}=\int\frac{\mathrm{dx}}{\mathrm{2x}^{\mathrm{2}} −\mathrm{4x}+\mathrm{3}}=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{dx}}{\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{2}}}{\left.\mathrm{2}\right)}\right)^{\mathrm{2}} } \\ $$$$=\sqrt{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \left[\sqrt{\mathrm{2}}\left(\mathrm{x}−\mathrm{1}\right)\right]+\mathrm{C}.\mathrm{Thus}, \\ $$$$\mathrm{I}=\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{2x}+\frac{\mathrm{5}}{\mathrm{4}}\mathrm{ln}\left(\mathrm{2x}^{\mathrm{2}} −\mathrm{4x}+\mathrm{3}\right)−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \left[\sqrt{\mathrm{2}}\left(\mathrm{x}−\mathrm{1}\right)\right]+\mathrm{C} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *