Menu Close

2x-3y-1-mod26-7x-8y-2-mod26-




Question Number 192992 by gatocomcirrose last updated on 01/Jun/23
 { ((2x+3y≡1(mod26))),((7x+8y≡2(mod26))) :}
$$\begin{cases}{\mathrm{2x}+\mathrm{3y}\equiv\mathrm{1}\left(\mathrm{mod26}\right)}\\{\mathrm{7x}+\mathrm{8y}\equiv\mathrm{2}\left(\mathrm{mod26}\right)}\end{cases} \\ $$$$ \\ $$
Answered by MM42 last updated on 01/Jun/23
2x+3y=26k+1  & 7x+8y=26k′+2  ⇒5x=26k′′−2⇒x≡^(26) 10 ✓  ⇒2x+3y≡^(26) 20+3y≡^(26) 1⇒3y≡^(26) −19≡7  ⇒27y≡^(26) 63≡^(26) 11⇒y≡^(26) 11 ✓
$$\mathrm{2}{x}+\mathrm{3}{y}=\mathrm{26}{k}+\mathrm{1}\:\:\&\:\mathrm{7}{x}+\mathrm{8}{y}=\mathrm{26}{k}'+\mathrm{2} \\ $$$$\Rightarrow\mathrm{5}{x}=\mathrm{26}{k}''−\mathrm{2}\Rightarrow{x}\overset{\mathrm{26}} {\equiv}\mathrm{10}\:\checkmark \\ $$$$\Rightarrow\mathrm{2}{x}+\mathrm{3}{y}\overset{\mathrm{26}} {\equiv}\mathrm{20}+\mathrm{3}{y}\overset{\mathrm{26}} {\equiv}\mathrm{1}\Rightarrow\mathrm{3}{y}\overset{\mathrm{26}} {\equiv}−\mathrm{19}\equiv\mathrm{7} \\ $$$$\Rightarrow\mathrm{27}{y}\overset{\mathrm{26}} {\equiv}\mathrm{63}\overset{\mathrm{26}} {\equiv}\mathrm{11}\Rightarrow{y}\overset{\mathrm{26}} {\equiv}\mathrm{11}\:\checkmark \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *