Menu Close

2x-3y-4z-1-min-1-x-1-y-1-z-




Question Number 115888 by Fikret last updated on 29/Sep/20
2x+3y+4z=1  ⇒min((1/x)+(1/y)+(1/z))
$$\mathrm{2}{x}+\mathrm{3}{y}+\mathrm{4}{z}=\mathrm{1}\:\:\Rightarrow{min}\left(\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}}\right) \\ $$
Commented by mr W last updated on 29/Sep/20
let 3y+4z→1  ⇒2x+1→1  ⇒x→0  ((1/x)+(1/y)+(1/z))→∞ or −∞  ⇒no maximum or minimum !
$${let}\:\mathrm{3}{y}+\mathrm{4}{z}\rightarrow\mathrm{1} \\ $$$$\Rightarrow\mathrm{2}{x}+\mathrm{1}\rightarrow\mathrm{1} \\ $$$$\Rightarrow{x}\rightarrow\mathrm{0} \\ $$$$\left(\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}}\right)\rightarrow\infty\:{or}\:−\infty \\ $$$$\Rightarrow{no}\:{maximum}\:{or}\:{minimum}\:! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *