Menu Close

2x-3y-5-x-2-y-2-min-




Question Number 98914 by shaxzod last updated on 17/Jun/20
2x+3y=5  (x^2 +y^2 )_(min) =?
$$\mathrm{2}{x}+\mathrm{3}{y}=\mathrm{5} \\ $$$$\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \underset{{min}} {\right)}=? \\ $$
Commented by john santu last updated on 17/Jun/20
y = ((5−2x)/3) ⇔y^2 = ((25−20x+4x^2 )/9)  let f(x)= x^2 +((25−20x+4x^2 )/9)  f ′(x) = 2x+((8x−20)/9) = 0  26x−20=0 ⇒x = ((10)/(13)) ⇔y=((5−((20)/(13)))/3)  y = ((45)/(3.13)) = ((15)/(13))  min {x^2 +y^2 } = ((325)/(169))
$$\mathrm{y}\:=\:\frac{\mathrm{5}−\mathrm{2x}}{\mathrm{3}}\:\Leftrightarrow\mathrm{y}^{\mathrm{2}} =\:\frac{\mathrm{25}−\mathrm{20x}+\mathrm{4x}^{\mathrm{2}} }{\mathrm{9}} \\ $$$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\:\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{25}−\mathrm{20x}+\mathrm{4x}^{\mathrm{2}} }{\mathrm{9}} \\ $$$$\mathrm{f}\:'\left(\mathrm{x}\right)\:=\:\mathrm{2x}+\frac{\mathrm{8x}−\mathrm{20}}{\mathrm{9}}\:=\:\mathrm{0} \\ $$$$\mathrm{26x}−\mathrm{20}=\mathrm{0}\:\Rightarrow\mathrm{x}\:=\:\frac{\mathrm{10}}{\mathrm{13}}\:\Leftrightarrow\mathrm{y}=\frac{\mathrm{5}−\frac{\mathrm{20}}{\mathrm{13}}}{\mathrm{3}} \\ $$$$\mathrm{y}\:=\:\frac{\mathrm{45}}{\mathrm{3}.\mathrm{13}}\:=\:\frac{\mathrm{15}}{\mathrm{13}} \\ $$$$\mathrm{min}\:\left\{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right\}\:=\:\frac{\mathrm{325}}{\mathrm{169}} \\ $$
Commented by mr W last updated on 17/Jun/20
((325)/(169))=((25)/(13))=correct
$$\frac{\mathrm{325}}{\mathrm{169}}=\frac{\mathrm{25}}{\mathrm{13}}={correct} \\ $$
Answered by Farruxjano last updated on 17/Jun/20
Let′s use Cauchy−Shvarz:  5=2×x+3×y≤(√((2^2 +3^2 )(x^2 +y^2 )))  (√(13(x^2 +y^2 )))≥5 ⇒ x^2 +y^2 ≥((25)/(13))  Answer: (x^2 +y^2 )_(min) =((25)/(13))
$$\boldsymbol{{Let}}'\boldsymbol{{s}}\:\boldsymbol{{use}}\:\boldsymbol{{Cauchy}}−\boldsymbol{{Shvarz}}: \\ $$$$\mathrm{5}=\mathrm{2}×\boldsymbol{{x}}+\mathrm{3}×\boldsymbol{{y}}\leqslant\sqrt{\left(\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} \right)\left(\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} \right)} \\ $$$$\sqrt{\mathrm{13}\left(\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} \right)}\geqslant\mathrm{5}\:\Rightarrow\:\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} \geqslant\frac{\mathrm{25}}{\mathrm{13}} \\ $$$$\boldsymbol{{Answer}}:\:\left(\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} \right)_{\boldsymbol{{min}}} =\frac{\mathrm{25}}{\mathrm{13}} \\ $$
Commented by john santu last updated on 17/Jun/20
with Lagrange multiplier  f(x,y,λ) = x^2 +y^2 +λ(2x+3y−5)  (∂f/∂x) = 2x+2λ = 0 , x=−λ  (∂f/∂y) = 2y+3λ = 0 , y=−(3/2)λ  we get 2x+3y=5  −2λ−(9/2)λ = 5 , λ = −((10)/(13))   { ((x = ((10)/(13)))),((y=−(3/2)×−((10)/(13)) = ((15)/(13)))) :}  min { x^2 +y^2  } = ((325)/(169))
$$\mathrm{with}\:\mathrm{Lagrange}\:\mathrm{multiplier} \\ $$$$\mathrm{f}\left(\mathrm{x},\mathrm{y},\lambda\right)\:=\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\lambda\left(\mathrm{2x}+\mathrm{3y}−\mathrm{5}\right) \\ $$$$\frac{\partial\mathrm{f}}{\partial\mathrm{x}}\:=\:\mathrm{2x}+\mathrm{2}\lambda\:=\:\mathrm{0}\:,\:\mathrm{x}=−\lambda \\ $$$$\frac{\partial\mathrm{f}}{\partial\mathrm{y}}\:=\:\mathrm{2y}+\mathrm{3}\lambda\:=\:\mathrm{0}\:,\:\mathrm{y}=−\frac{\mathrm{3}}{\mathrm{2}}\lambda \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{2x}+\mathrm{3y}=\mathrm{5} \\ $$$$−\mathrm{2}\lambda−\frac{\mathrm{9}}{\mathrm{2}}\lambda\:=\:\mathrm{5}\:,\:\lambda\:=\:−\frac{\mathrm{10}}{\mathrm{13}} \\ $$$$\begin{cases}{\mathrm{x}\:=\:\frac{\mathrm{10}}{\mathrm{13}}}\\{\mathrm{y}=−\frac{\mathrm{3}}{\mathrm{2}}×−\frac{\mathrm{10}}{\mathrm{13}}\:=\:\frac{\mathrm{15}}{\mathrm{13}}}\end{cases} \\ $$$$\mathrm{min}\:\left\{\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \:\right\}\:=\:\frac{\mathrm{325}}{\mathrm{169}} \\ $$$$ \\ $$
Answered by maths mind last updated on 17/Jun/20
2x+3y≤(√(4+9)).(√(x^2 +y^2 ))  ⇔(x^2 +y^2 )^(1/2) ≥(5/( (√(13))))⇒x^2 +y^2 ≥((25)/(13))=((25.13)/(13.13))=((325)/(169))  {x^2 +y^2 }_(min) =((25)/(13))
$$\mathrm{2}{x}+\mathrm{3}{y}\leqslant\sqrt{\mathrm{4}+\mathrm{9}}.\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$$$\Leftrightarrow\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} \geqslant\frac{\mathrm{5}}{\:\sqrt{\mathrm{13}}}\Rightarrow{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \geqslant\frac{\mathrm{25}}{\mathrm{13}}=\frac{\mathrm{25}.\mathrm{13}}{\mathrm{13}.\mathrm{13}}=\frac{\mathrm{325}}{\mathrm{169}} \\ $$$$\left\{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right\}_{{min}} =\frac{\mathrm{25}}{\mathrm{13}} \\ $$
Answered by mr W last updated on 17/Jun/20
(x^2 +y^2 )_(min) =d^2 =((∣2×0+3×0−5∣^2 )/(2^2 +3^2 ))=((25)/(13))
$$\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \underset{{min}} {\right)}={d}^{\mathrm{2}} =\frac{\mid\mathrm{2}×\mathrm{0}+\mathrm{3}×\mathrm{0}−\mathrm{5}\mid^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} }=\frac{\mathrm{25}}{\mathrm{13}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *