Menu Close

2x-x-x-2-y-2-dx-2y-x-dy-0-




Question Number 26198 by sorour87 last updated on 22/Dec/17
(2x(√x)+x^2 +y^2 )dx+2y(√x)dy=0
$$\left(\mathrm{2}{x}\sqrt{{x}}+{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right){dx}+\mathrm{2}{y}\sqrt{{x}}{dy}=\mathrm{0} \\ $$
Answered by ajfour last updated on 22/Dec/17
let   x^2 +y^2 =r^2   ⇒    xdx+ydy=rdr  so (2x(√x)+x^2 +y^2 )dx+2y(√x)dy=0  becomes      2(√x)(xdx+ydy)+(x^2 +y^2 )dx=0  or   2(√x)(rdr)+r^2 dx=0  ⇒    (dr/r) +(dx/(2(√x))) =0   ⇒   ln r +(√x) = c  or     (1/2)ln (x^2 +y^2 )+(√x) = c .
$${let}\:\:\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\:\:{xdx}+{ydy}={rdr} \\ $$$${so}\:\left(\mathrm{2}{x}\sqrt{{x}}+{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right){dx}+\mathrm{2}{y}\sqrt{{x}}{dy}=\mathrm{0} \\ $$$${becomes} \\ $$$$\:\:\:\:\mathrm{2}\sqrt{{x}}\left({xdx}+{ydy}\right)+\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right){dx}=\mathrm{0} \\ $$$${or}\:\:\:\mathrm{2}\sqrt{{x}}\left({rdr}\right)+{r}^{\mathrm{2}} {dx}=\mathrm{0} \\ $$$$\Rightarrow\:\:\:\:\frac{{dr}}{{r}}\:+\frac{{dx}}{\mathrm{2}\sqrt{{x}}}\:=\mathrm{0} \\ $$$$\:\Rightarrow\:\:\:\mathrm{ln}\:{r}\:+\sqrt{{x}}\:=\:{c} \\ $$$${or}\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)+\sqrt{{x}}\:=\:{c}\:. \\ $$
Commented by sorour87 last updated on 22/Dec/17
thank you
$${thank}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *