Menu Close

2z-2-z-2-z-1-lt-1-




Question Number 100730 by john santu last updated on 28/Jun/20
((2z^2 )/(z^2 +∣z+1∣)) < 1
$$\frac{\mathrm{2}{z}^{\mathrm{2}} }{{z}^{\mathrm{2}} +\mid{z}+\mathrm{1}\mid}\:<\:\mathrm{1}\: \\ $$
Commented by bemath last updated on 28/Jun/20
since z^2 +∣z+1∣ > 0 then 2z^2  < z^2 +∣z+1∣  z^2  > ∣z+1∣ ⇒(z^2 +z+1)(z^2 −z−1) <0  first term z^2 +z+1 > 0 for ∀z∈R  so z^2 −z−1 <0  (z−(1/2))^2 −(5/4) < 0  (z−(1/2)−((√5)/2))(z−(1/2)+((√5)/2)) <0  ⇔∴ (1/2)−((√5)/2) < z < (1/2)+((√5)/2)
$$\mathrm{since}\:\mathrm{z}^{\mathrm{2}} +\mid\mathrm{z}+\mathrm{1}\mid\:>\:\mathrm{0}\:\mathrm{then}\:\mathrm{2z}^{\mathrm{2}} \:<\:\mathrm{z}^{\mathrm{2}} +\mid\mathrm{z}+\mathrm{1}\mid \\ $$$$\mathrm{z}^{\mathrm{2}} \:>\:\mid\mathrm{z}+\mathrm{1}\mid\:\Rightarrow\left(\mathrm{z}^{\mathrm{2}} +\mathrm{z}+\mathrm{1}\right)\left(\mathrm{z}^{\mathrm{2}} −\mathrm{z}−\mathrm{1}\right)\:<\mathrm{0} \\ $$$$\mathrm{first}\:\mathrm{term}\:\mathrm{z}^{\mathrm{2}} +\mathrm{z}+\mathrm{1}\:>\:\mathrm{0}\:\mathrm{for}\:\forall\mathrm{z}\in\mathbb{R} \\ $$$$\mathrm{so}\:\mathrm{z}^{\mathrm{2}} −\mathrm{z}−\mathrm{1}\:<\mathrm{0} \\ $$$$\left(\mathrm{z}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} −\frac{\mathrm{5}}{\mathrm{4}}\:<\:\mathrm{0} \\ $$$$\left(\mathrm{z}−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\right)\left(\mathrm{z}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\right)\:<\mathrm{0} \\ $$$$\Leftrightarrow\therefore\:\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\:<\:\mathrm{z}\:<\:\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *