Menu Close

3-1-2-1-a-1-3-1-4-find-a-




Question Number 100302 by bemath last updated on 26/Jun/20
(√(3^(−(1/2)) +1)) = ((√(a+1))/3^(−(1/4)) ) . find a ?
$$\sqrt{\mathrm{3}^{−\frac{\mathrm{1}}{\mathrm{2}}} +\mathrm{1}}\:=\:\frac{\sqrt{\mathrm{a}+\mathrm{1}}}{\mathrm{3}^{−\frac{\mathrm{1}}{\mathrm{4}}} }\:.\:\mathrm{find}\:\mathrm{a}\:? \\ $$
Commented by bobhans last updated on 26/Jun/20
(1/( (√3))) +1 = ((a+1)/3^(−(1/2)) ) ⇒ (((√3)+1)/( (√3))) = (√3) (a+1)  ⇒a+1 = (((√3)+1)/3) = ((√3)/3) +(1/3)  a = ((√3)/3) − (2/3) = −(2/3)+3^(−(1/2))
$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:+\mathrm{1}\:=\:\frac{\mathrm{a}+\mathrm{1}}{\mathrm{3}^{−\frac{\mathrm{1}}{\mathrm{2}}} }\:\Rightarrow\:\frac{\sqrt{\mathrm{3}}+\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:=\:\sqrt{\mathrm{3}}\:\left(\mathrm{a}+\mathrm{1}\right) \\ $$$$\Rightarrow\mathrm{a}+\mathrm{1}\:=\:\frac{\sqrt{\mathrm{3}}+\mathrm{1}}{\mathrm{3}}\:=\:\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\:+\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\mathrm{a}\:=\:\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\:−\:\frac{\mathrm{2}}{\mathrm{3}}\:=\:−\frac{\mathrm{2}}{\mathrm{3}}+\mathrm{3}^{−\frac{\mathrm{1}}{\mathrm{2}}} \\ $$
Commented by Dwaipayan Shikari last updated on 26/Jun/20
3^(−(1/2)) +1=((a+1)/3^(−(1/2)) )⇒a+1=(1/3)+(1/( (√3)))  ⇒ a=(1/( (√3)))−(2/3)
$$\mathrm{3}^{−\frac{\mathrm{1}}{\mathrm{2}}} +\mathrm{1}=\frac{{a}+\mathrm{1}}{\mathrm{3}^{−\frac{\mathrm{1}}{\mathrm{2}}} }\Rightarrow\mathrm{a}+\mathrm{1}=\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:\:\Rightarrow\:\mathrm{a}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}−\frac{\mathrm{2}}{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *