Menu Close

3-100-2-100-4-100-which-is-greater-Give-proof-




Question Number 191443 by MATHEMATICSAM last updated on 24/Apr/23
(3^(100)  + 2^(100) ), 4^(100)  which is greater?  Give proof.
$$\left(\mathrm{3}^{\mathrm{100}} \:+\:\mathrm{2}^{\mathrm{100}} \right),\:\mathrm{4}^{\mathrm{100}} \:\mathrm{which}\:\mathrm{is}\:\mathrm{greater}? \\ $$$$\mathrm{Give}\:\mathrm{proof}. \\ $$
Answered by Frix last updated on 24/Apr/23
4^(100) =2^(200) >2^(100) +3^(100)   2^(200) −2^(100) >3^(100)   2^(100) (2^(100) −1)>3^(100)   2^(100) −1>((3/2))^(100)  which is obvious
$$\mathrm{4}^{\mathrm{100}} =\mathrm{2}^{\mathrm{200}} >\mathrm{2}^{\mathrm{100}} +\mathrm{3}^{\mathrm{100}} \\ $$$$\mathrm{2}^{\mathrm{200}} −\mathrm{2}^{\mathrm{100}} >\mathrm{3}^{\mathrm{100}} \\ $$$$\mathrm{2}^{\mathrm{100}} \left(\mathrm{2}^{\mathrm{100}} −\mathrm{1}\right)>\mathrm{3}^{\mathrm{100}} \\ $$$$\mathrm{2}^{\mathrm{100}} −\mathrm{1}>\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{100}} \:\mathrm{which}\:\mathrm{is}\:\mathrm{obvious} \\ $$
Answered by mehdee42 last updated on 24/Apr/23
4^(100) =16^(50) >13^(50) =(4+9)^(50) >4^(50) +9^(50)   ⇒4^(100) >2^(100) +3^(100)
$$\mathrm{4}^{\mathrm{100}} =\mathrm{16}^{\mathrm{50}} >\mathrm{13}^{\mathrm{50}} =\left(\mathrm{4}+\mathrm{9}\right)^{\mathrm{50}} >\mathrm{4}^{\mathrm{50}} +\mathrm{9}^{\mathrm{50}} \\ $$$$\Rightarrow\mathrm{4}^{\mathrm{100}} >\mathrm{2}^{\mathrm{100}} +\mathrm{3}^{\mathrm{100}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *