Menu Close

3-2x-2-3-x-2-2x-5-10-3-4x-6-




Question Number 84904 by john santu last updated on 17/Mar/20
3^(2x^2 )  + 3^(x^2 +2x+5)  ≥ 10. 3^(4x+6)
$$\mathrm{3}^{\mathrm{2x}^{\mathrm{2}} } \:+\:\mathrm{3}^{\mathrm{x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{5}} \:\geqslant\:\mathrm{10}.\:\mathrm{3}^{\mathrm{4x}+\mathrm{6}} \\ $$$$ \\ $$
Commented by john santu last updated on 17/Mar/20
let 3^x^2   = u & 3^(2x+3)  = v  ⇒ u^2 +9uv−10v^2  ≥ 0  ⇒ (u−v)(u+10v) ≥ 0   ⇒u ≥ v , 3^x^2   ≥ 3^(2x+3)   ⇒ x^2 −2x−3 ≥ 0   x ≤ −1 ∨ x ≥ 3
$$\mathrm{let}\:\mathrm{3}^{\mathrm{x}^{\mathrm{2}} } \:=\:\mathrm{u}\:\&\:\mathrm{3}^{\mathrm{2x}+\mathrm{3}} \:=\:\mathrm{v} \\ $$$$\Rightarrow\:\mathrm{u}^{\mathrm{2}} +\mathrm{9uv}−\mathrm{10v}^{\mathrm{2}} \:\geqslant\:\mathrm{0} \\ $$$$\Rightarrow\:\left(\mathrm{u}−\mathrm{v}\right)\left(\mathrm{u}+\mathrm{10v}\right)\:\geqslant\:\mathrm{0}\: \\ $$$$\Rightarrow\mathrm{u}\:\geqslant\:\mathrm{v}\:,\:\mathrm{3}^{\mathrm{x}^{\mathrm{2}} } \:\geqslant\:\mathrm{3}^{\mathrm{2x}+\mathrm{3}} \\ $$$$\Rightarrow\:\mathrm{x}^{\mathrm{2}} −\mathrm{2x}−\mathrm{3}\:\geqslant\:\mathrm{0}\: \\ $$$$\mathrm{x}\:\leqslant\:−\mathrm{1}\:\vee\:\mathrm{x}\:\geqslant\:\mathrm{3}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *