Menu Close

3-4-8-9-15-16-2499-2500-




Question Number 89271 by jagoll last updated on 16/Apr/20
(3/4)×(8/9)×((15)/(16))×...×((2499)/(2500))
$$\frac{\mathrm{3}}{\mathrm{4}}×\frac{\mathrm{8}}{\mathrm{9}}×\frac{\mathrm{15}}{\mathrm{16}}×…×\frac{\mathrm{2499}}{\mathrm{2500}} \\ $$
Commented by john santu last updated on 16/Apr/20
((2^2 −1)/2^2 )×((3^2 −1)/3^2 )×((4^2 −1)/4^2 )×...×((50^2 −1)/(50^2 ))  = Π_(j = 2) ^n  ((j^2 −1)/j^2 ) = ((j+1)/(2j))  = Π_(j = 2) ^(50)  ((j^2 −1)/j^2 ) = ((51)/(100))
$$\frac{\mathrm{2}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }×\frac{\mathrm{3}^{\mathrm{2}} −\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }×\frac{\mathrm{4}^{\mathrm{2}} −\mathrm{1}}{\mathrm{4}^{\mathrm{2}} }×…×\frac{\mathrm{50}^{\mathrm{2}} −\mathrm{1}}{\mathrm{50}^{\mathrm{2}} } \\ $$$$=\:\underset{{j}\:=\:\mathrm{2}} {\overset{{n}} {\prod}}\:\frac{{j}^{\mathrm{2}} −\mathrm{1}}{{j}^{\mathrm{2}} }\:=\:\frac{{j}+\mathrm{1}}{\mathrm{2}{j}} \\ $$$$=\:\underset{{j}\:=\:\mathrm{2}} {\overset{\mathrm{50}} {\prod}}\:\frac{{j}^{\mathrm{2}} −\mathrm{1}}{{j}^{\mathrm{2}} }\:=\:\frac{\mathrm{51}}{\mathrm{100}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *