Menu Close

3-5-x-5-3-x-solve-for-x-




Question Number 175685 by Linton last updated on 05/Sep/22
3^5^x  = 5^3^x    solve for x
$$\mathrm{3}^{\mathrm{5}^{{x}} } =\:\mathrm{5}^{\mathrm{3}^{{x}} } \\ $$$${solve}\:{for}\:{x} \\ $$
Answered by mahdipoor last updated on 05/Sep/22
ln(ln(3^5^x  ))=ln(ln(5^3^x  )) ⇒  ln(5^x ×ln(3))=ln(3^x ×ln(5)) ⇒  x.ln5+ln(ln3)=x.ln3+ln(ln5) ⇒  x=((ln(ln5)−ln(ln3))/(ln5−ln3))=((ln(((ln5)/(ln3))))/(ln((5/3))))=  log_(5/3) (log_3 5)
$${ln}\left({ln}\left(\mathrm{3}^{\mathrm{5}^{{x}} } \right)\right)={ln}\left({ln}\left(\mathrm{5}^{\mathrm{3}^{{x}} } \right)\right)\:\Rightarrow \\ $$$${ln}\left(\mathrm{5}^{{x}} ×{ln}\left(\mathrm{3}\right)\right)={ln}\left(\mathrm{3}^{{x}} ×{ln}\left(\mathrm{5}\right)\right)\:\Rightarrow \\ $$$${x}.{ln}\mathrm{5}+{ln}\left({ln}\mathrm{3}\right)={x}.{ln}\mathrm{3}+{ln}\left({ln}\mathrm{5}\right)\:\Rightarrow \\ $$$${x}=\frac{{ln}\left({ln}\mathrm{5}\right)−{ln}\left({ln}\mathrm{3}\right)}{{ln}\mathrm{5}−{ln}\mathrm{3}}=\frac{{ln}\left(\frac{{ln}\mathrm{5}}{{ln}\mathrm{3}}\right)}{{ln}\left(\frac{\mathrm{5}}{\mathrm{3}}\right)}= \\ $$$${log}_{\frac{\mathrm{5}}{\mathrm{3}}} \left({log}_{\mathrm{3}} \mathrm{5}\right) \\ $$
Answered by Rasheed.Sindhi last updated on 06/Sep/22
3^5^x  = 5^3^x    5^x log 3=3^x log 5  ((5/3))^x =((log 5)/(log 3))=log_3 5  x(log5−log3)=log(log_3 5)  x=((log(log_3 5))/(log5−log3))
$$\mathrm{3}^{\mathrm{5}^{{x}} } =\:\mathrm{5}^{\mathrm{3}^{{x}} } \\ $$$$\mathrm{5}^{{x}} \mathrm{log}\:\mathrm{3}=\mathrm{3}^{{x}} \mathrm{log}\:\mathrm{5} \\ $$$$\left(\frac{\mathrm{5}}{\mathrm{3}}\right)^{{x}} =\frac{\mathrm{log}\:\mathrm{5}}{\mathrm{log}\:\mathrm{3}}=\mathrm{log}_{\mathrm{3}} \mathrm{5} \\ $$$${x}\left(\mathrm{log5}−\mathrm{log3}\right)=\mathrm{log}\left(\mathrm{log}_{\mathrm{3}} \mathrm{5}\right) \\ $$$${x}=\frac{\mathrm{log}\left(\mathrm{log}_{\mathrm{3}} \mathrm{5}\right)}{\mathrm{log5}−\mathrm{log3}}\:\:\: \\ $$
Commented by Rasheed.Sindhi last updated on 05/Sep/22
Thank you for correction sir!
$$\mathcal{T}{hank}\:{you}\:{for}\:{correction}\:{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *