Menu Close

3-6-9-96-99-




Question Number 152122 by peter frank last updated on 26/Aug/21
(√(3+(√(6+(√(9+...+(√(96+(√(99)))))))))) = ?
$$\sqrt{\mathrm{3}+\sqrt{\mathrm{6}+\sqrt{\mathrm{9}+…+\sqrt{\mathrm{96}+\sqrt{\mathrm{99}}}}}}\:=\:? \\ $$$$ \\ $$
Answered by peter frank last updated on 26/Aug/21
y=(√(3+y))   y^2 −y−3=0   y=((1±(√(13)))/2)
$$\mathrm{y}=\sqrt{\mathrm{3}+\mathrm{y}}\: \\ $$$$\mathrm{y}^{\mathrm{2}} −\mathrm{y}−\mathrm{3}=\mathrm{0}\: \\ $$$$\mathrm{y}=\frac{\mathrm{1}\pm\sqrt{\mathrm{13}}}{\mathrm{2}} \\ $$
Commented by MJS_new last updated on 26/Aug/21
you solved  y=(√(3+(√(3+(√(3+..._(→ to infinity) ))))))  ⇒ y>0  y^2 =3+y  y^2 −y−3=0∧y>0 ⇒ y=((1+(√(13)))/2)  but I think we cannot give a “nice” closed  expression for  y=(√(3+(√(2×3+(√(3×3+...+(√(33×3))))))))
$$\mathrm{you}\:\mathrm{solved} \\ $$$${y}=\sqrt{\mathrm{3}+\sqrt{\mathrm{3}+\sqrt{\mathrm{3}+…_{\rightarrow\:\mathrm{to}\:\mathrm{infinity}} }}} \\ $$$$\Rightarrow\:{y}>\mathrm{0} \\ $$$${y}^{\mathrm{2}} =\mathrm{3}+{y} \\ $$$${y}^{\mathrm{2}} −{y}−\mathrm{3}=\mathrm{0}\wedge{y}>\mathrm{0}\:\Rightarrow\:{y}=\frac{\mathrm{1}+\sqrt{\mathrm{13}}}{\mathrm{2}} \\ $$$$\mathrm{but}\:\mathrm{I}\:\mathrm{think}\:\mathrm{we}\:\mathrm{cannot}\:\mathrm{give}\:\mathrm{a}\:“\mathrm{nice}''\:\mathrm{closed} \\ $$$$\mathrm{expression}\:\mathrm{for} \\ $$$${y}=\sqrt{\mathrm{3}+\sqrt{\mathrm{2}×\mathrm{3}+\sqrt{\mathrm{3}×\mathrm{3}+…+\sqrt{\mathrm{33}×\mathrm{3}}}}} \\ $$
Commented by peter frank last updated on 26/Aug/21
thank you
$$\mathrm{thank}\:\mathrm{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *