Menu Close

3-C-1-4-C-2-5-C-3-49-C-47-where-n-C-r-n-r-n-r-




Question Number 25122 by math solver last updated on 04/Dec/17
 3_C_1   + 4_C_2   + 5_C_3   +...........+ 49_C_(47)   = ?  where n_C_r   = ((n!)/(r!×(n−r)!)) .
3C1+4C2+5C3+..+49C47=?wherenCr=n!r!×(nr)!.
Commented by moxhix last updated on 04/Dec/17
  define  n_C_r  =:  _n C_r      _3 C_1 + _4 C_2 + _5 C_3 +...+ _(49) C_(47)   = _3 C_2 + _4 C_2 + _5 C_2 +...+ _(49) C_2   = ((3×2)/(2×1))+((4×3)/(2×1))+((5×4)/(2×1))+...+((49×48)/(2×1))  =(1/2)Σ_(k=1) ^(47) (k+1)(k+2)  =(1/2)Σ_(k=1) ^(47) (k^2 +3k+2)  =(1/2)((1/6)47×48×95+(3/2)47×48+2×47)  =47×4×95+3×47×12+1×47)  =47(4×95+3×12+1)  =47×417  =19599
definenCr=:nCr3C1+4C2+5C3++49C47=3C2+4C2+5C2++49C2=3×22×1+4×32×1+5×42×1++49×482×1=1247k=1(k+1)(k+2)=1247k=1(k2+3k+2)=12(1647×48×95+3247×48+2×47)=47×4×95+3×47×12+1×47)=47(4×95+3×12+1)=47×417=19599

Leave a Reply

Your email address will not be published. Required fields are marked *