Question Number 25122 by math solver last updated on 04/Dec/17
$$\:\mathrm{3}_{{C}_{\mathrm{1}} } \:+\:\mathrm{4}_{{C}_{\mathrm{2}} } \:+\:\mathrm{5}_{{C}_{\mathrm{3}} } \:+………..+\:\mathrm{49}_{{C}_{\mathrm{47}} } \:=\:? \\ $$$${where}\:{n}_{{C}_{{r}} } \:=\:\frac{{n}!}{{r}!×\left({n}−{r}\right)!}\:. \\ $$
Commented by moxhix last updated on 04/Dec/17
$$ \\ $$$${define}\:\:{n}_{{C}_{{r}} } =:\:\:_{{n}} {C}_{{r}} \\ $$$$ \\ $$$$\:_{\mathrm{3}} {C}_{\mathrm{1}} +\:_{\mathrm{4}} {C}_{\mathrm{2}} +\:_{\mathrm{5}} {C}_{\mathrm{3}} +…+\:_{\mathrm{49}} {C}_{\mathrm{47}} \\ $$$$=\:_{\mathrm{3}} {C}_{\mathrm{2}} +\:_{\mathrm{4}} {C}_{\mathrm{2}} +\:_{\mathrm{5}} {C}_{\mathrm{2}} +…+\:_{\mathrm{49}} {C}_{\mathrm{2}} \\ $$$$=\:\frac{\mathrm{3}×\mathrm{2}}{\mathrm{2}×\mathrm{1}}+\frac{\mathrm{4}×\mathrm{3}}{\mathrm{2}×\mathrm{1}}+\frac{\mathrm{5}×\mathrm{4}}{\mathrm{2}×\mathrm{1}}+…+\frac{\mathrm{49}×\mathrm{48}}{\mathrm{2}×\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\underset{{k}=\mathrm{1}} {\overset{\mathrm{47}} {\sum}}\left({k}+\mathrm{1}\right)\left({k}+\mathrm{2}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\underset{{k}=\mathrm{1}} {\overset{\mathrm{47}} {\sum}}\left({k}^{\mathrm{2}} +\mathrm{3}{k}+\mathrm{2}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{6}}\mathrm{47}×\mathrm{48}×\mathrm{95}+\frac{\mathrm{3}}{\mathrm{2}}\mathrm{47}×\mathrm{48}+\mathrm{2}×\mathrm{47}\right) \\ $$$$\left.=\mathrm{47}×\mathrm{4}×\mathrm{95}+\mathrm{3}×\mathrm{47}×\mathrm{12}+\mathrm{1}×\mathrm{47}\right) \\ $$$$=\mathrm{47}\left(\mathrm{4}×\mathrm{95}+\mathrm{3}×\mathrm{12}+\mathrm{1}\right) \\ $$$$=\mathrm{47}×\mathrm{417} \\ $$$$=\mathrm{19599} \\ $$$$ \\ $$