Menu Close

3-d-2-y-dx-2-4-dy-dx-5y-0-y-




Question Number 116055 by Study last updated on 30/Sep/20
3(d^2 y/dx^2 )+4(dy/dx)+5y=0      y=?
$$\mathrm{3}\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }+\mathrm{4}\frac{{dy}}{{dx}}+\mathrm{5}{y}=\mathrm{0}\:\:\:\:\:\:{y}=? \\ $$
Commented by mohammad17 last updated on 30/Sep/20
(3D^2 +4D+5)y=0    (3m^2 +4m+5)=0    m=((−4±(√(16−60)))/6)⇒m_1 =−(2/3)−((√(44))/6)i  and m_2 =−(2/3)+((√(44))/6)i    y=e^(−(2/3)x) {C_1 cos(((√(44))/6)x)+C_2 sin(((√(44))/6)x)}    ≪m.o≫
$$\left(\mathrm{3}{D}^{\mathrm{2}} +\mathrm{4}{D}+\mathrm{5}\right){y}=\mathrm{0} \\ $$$$ \\ $$$$\left(\mathrm{3}{m}^{\mathrm{2}} +\mathrm{4}{m}+\mathrm{5}\right)=\mathrm{0} \\ $$$$ \\ $$$${m}=\frac{−\mathrm{4}\pm\sqrt{\mathrm{16}−\mathrm{60}}}{\mathrm{6}}\Rightarrow{m}_{\mathrm{1}} =−\frac{\mathrm{2}}{\mathrm{3}}−\frac{\sqrt{\mathrm{44}}}{\mathrm{6}}{i}\:\:{and}\:{m}_{\mathrm{2}} =−\frac{\mathrm{2}}{\mathrm{3}}+\frac{\sqrt{\mathrm{44}}}{\mathrm{6}}{i} \\ $$$$ \\ $$$${y}={e}^{−\frac{\mathrm{2}}{\mathrm{3}}{x}} \left\{{C}_{\mathrm{1}} {cos}\left(\frac{\sqrt{\mathrm{44}}}{\mathrm{6}}{x}\right)+{C}_{\mathrm{2}} {sin}\left(\frac{\sqrt{\mathrm{44}}}{\mathrm{6}}{x}\right)\right\} \\ $$$$ \\ $$$$\ll{m}.{o}\gg \\ $$
Answered by Bird last updated on 30/Sep/20
3y^(′′)  +4y^′  +5=0 ⇒3r^2  +4r  +5=0  Δ^(′ ) =4−15 =−11 ⇒  r_1 =((−2+i(√(11)))/3) and r_2 =((−2−i(√(11)))/3)  ⇒y =α e^(r_1 x) +βe^(r_2 x) =e^((−2x)/3) {acos(((√(11))/3)x)+bsin(((√(11))/3)x)}
$$\mathrm{3}{y}^{''} \:+\mathrm{4}{y}^{'} \:+\mathrm{5}=\mathrm{0}\:\Rightarrow\mathrm{3}{r}^{\mathrm{2}} \:+\mathrm{4}{r}\:\:+\mathrm{5}=\mathrm{0} \\ $$$$\Delta^{'\:} =\mathrm{4}−\mathrm{15}\:=−\mathrm{11}\:\Rightarrow \\ $$$${r}_{\mathrm{1}} =\frac{−\mathrm{2}+{i}\sqrt{\mathrm{11}}}{\mathrm{3}}\:{and}\:{r}_{\mathrm{2}} =\frac{−\mathrm{2}−{i}\sqrt{\mathrm{11}}}{\mathrm{3}} \\ $$$$\Rightarrow{y}\:=\alpha\:{e}^{{r}_{\mathrm{1}} {x}} +\beta{e}^{{r}_{\mathrm{2}} {x}} ={e}^{\frac{−\mathrm{2}{x}}{\mathrm{3}}} \left\{{acos}\left(\frac{\sqrt{\mathrm{11}}}{\mathrm{3}}{x}\right)+{bsin}\left(\frac{\sqrt{\mathrm{11}}}{\mathrm{3}}{x}\right)\right\} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *