Menu Close

3-x-x-1-gt-1-2-




Question Number 79306 by jagoll last updated on 24/Jan/20
  (√(3−x))−(√(x+1))>(1/2)
3xx+1>12
Commented by kaivan.ahmadi last updated on 24/Jan/20
3−x≥0⇒x≤3  x+1≥0⇒x≥−1  ⇒−1≤x≤3    3−x+x−1−2(√((3−x)(x+1)))>(1/4)⇒  −2(√((3−x)(x+1)))>−(7/4)⇒(√((3−x)(x+1)))<(7/8)⇒  (3−x)(x+1)<((49)/(64))⇒3−x^2 +2x+3<((49)/(64))⇒  x^2 −2x−((143)/(64))>0  Δ=4+((143)/(16))=((207)/(64))  x_(1,2) =((2±((√(207))/8))/2)=1±((√(207))/(16))=1±((3(√(23)))/(16))  x∈[−1,1−((3(√(23)))/(16))]∪[1+((3(√(23)))/(16)),3]
3x0x3x+10x11x33x+x12(3x)(x+1)>142(3x)(x+1)>74(3x)(x+1)<78(3x)(x+1)<49643x2+2x+3<4964x22x14364>0Δ=4+14316=20764x1,2=2±20782=1±20716=1±32316x[1,132316][1+32316,3]
Commented by key of knowledge last updated on 24/Jan/20
ahmadi aziz,for x=3:  (√(3−3))−(√(3+1))=0−2=−2≯(1/2)
ahmadiaziz,forx=3:333+1=02=212
Commented by kaivan.ahmadi last updated on 24/Jan/20
Hi sir, thank you.  I did err , in line 4  3−x+x+1
Hisir,thankyou.Ididerr,inline43x+x+1
Commented by kaivan.ahmadi last updated on 24/Jan/20
aziz delam
azizdelam
Commented by john santu last updated on 24/Jan/20
(i) x≤3 ∧x≥−1  (ii) (√(3−x)) −(1/2)>(√(x+1))  squaring   3−x+(1/4)−(√(3−x)) >x+1  (9/4)−2x>(√(3−x)) , x<(9/8)  squaring ⇒((81)/(16))−9x+4x^2 >3−x  4x^2 −8x+((33)/(16))>0  x^2 −2x+((33)/(64))>0  (x−1)^2 −((31)/(64))>0  x<1−((√(31))/8) ∨ x>1+((√(31))/8)  now we get solution  −1≤x≤3 ∧x<(9/8)∧{x<1−((√(31))/8) ∨x>1+((√(31))/8)}  ∴ −1≤x<1−((√(31))/8)
(i)x3x1(ii)3x12>x+1squaring3x+143x>x+1942x>3x,x<98squaring81169x+4x2>3x4x28x+3316>0x22x+3364>0(x1)23164>0x<1318x>1+318nowwegetsolution1x3x<98{x<1318x>1+318}1x<1318
Commented by john santu last updated on 24/Jan/20
by cheking   x ∈[−1,1−((√(31))/8)) ⇒ [−1, 0.304)  put x = 0.2 ⇒(√(3−0.2))−(√(1+0.2))  =1.673−1.095 =0.578 . true
bychekingx[1,1318)[1,0.304)putx=0.230.21+0.2=1.6731.095=0.578.true
Commented by jagoll last updated on 24/Jan/20
thank you
thankyou
Answered by key of knowledge last updated on 24/Jan/20
3−x≥0∧x+1≥0⇒−1≤x≤3 (i)  (√(3−x))>(√(x+1))+(1/2)⇒3−x>(1/4)+x+1+(√(x+1))⇒  (7/4)−2x>(√(x+1))   ((√(x+1))≥0⇒(7/4)−2x≥0⇒x≤(7/8) (ii))  4x^2 −8x+((33)/(16))>0⇒((8+(√(31)))/8)<x∨x<((8−(√(31)))/8)  (iii)  i∩ii∩iii=[−1,((8−(√(31)))/8)]
3x0x+101x3(i)3x>x+1+123x>14+x+1+x+1742x>x+1(x+10742x0x78(ii))4x28x+3316>08+318<xx<8318(iii)iiiiii=[1,8318]

Leave a Reply

Your email address will not be published. Required fields are marked *