Menu Close

32-32-32-7-find-remainder-




Question Number 29700 by 803jaideep@gmail.com last updated on 11/Feb/18
32^(32^(32) )  /7...find remainder
$$\mathrm{32}^{\mathrm{32}^{\mathrm{32}} } \:/\mathrm{7}…\mathrm{find}\:\mathrm{remainder} \\ $$
Answered by Tinkutara last updated on 13/Feb/18
Commented by Tinkutara last updated on 13/Feb/18
Proof by Binomial Theorem.
Commented by rahul 19 last updated on 13/Feb/18
this seems correct.
$$\mathrm{this}\:\mathrm{seems}\:\mathrm{correct}. \\ $$
Commented by 803jaideep@gmail.com last updated on 14/Feb/18
2^5^(32)  ≠2^(160 )  as 5^(32) ≠160
$$\mathrm{2}^{\mathrm{5}^{\mathrm{32}} } \neq\mathrm{2}^{\mathrm{160}\:} \:\mathrm{as}\:\mathrm{5}^{\mathrm{32}} \neq\mathrm{160} \\ $$
Commented by Tinkutara last updated on 14/Feb/18
In second line  32^(32) =(2^5 )^(32) =2^(160)  is correct.
$${In}\:{second}\:{line} \\ $$$$\mathrm{32}^{\mathrm{32}} =\left(\mathrm{2}^{\mathrm{5}} \right)^{\mathrm{32}} =\mathrm{2}^{\mathrm{160}} \:{is}\:{correct}. \\ $$
Commented by 803jaideep@gmail.com last updated on 14/Feb/18
kk... thn i misunderstood it
$$\mathrm{kk}…\:\mathrm{thn}\:\mathrm{i}\:\mathrm{misunderstood}\:\mathrm{it} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *