Menu Close

32-32-32-r-mod-7-r-




Question Number 187619 by BaliramKumar last updated on 19/Feb/23
32^(32^(32) )  ≡ r (mod   7)  r = ?
$$\mathrm{32}^{\mathrm{32}^{\mathrm{32}} } \:\equiv\:{r}\:\left({mod}\:\:\:\mathrm{7}\right) \\ $$$${r}\:=\:? \\ $$
Answered by SEKRET last updated on 19/Feb/23
(32)^(32^(32) ) ≡r mod(7)      r=?    (4∙7+4)^(32^(32 ) )     4^1 ≡4 mod(7)   4^2 ≡2 mod(7)    4^3 ≡1 mod(7)    4^4 ≡4 mod(7)→  T=3      32^(32) ≡x mod(3)     (3∙10+2)^(32)      2^1 ≡2 mod(3)     2^2 ≡1 mod(3)     2^3 ≡ 2 mod(3) →  T_2 =2    32≡0 mod(2)    32^1 ≡ 4 mod(7)    32^(32^(32) ) = 4 mod(7)    ABDULAZIZ  ABDUVALIYEV
$$\left(\mathrm{32}\right)^{\mathrm{32}^{\mathrm{32}} } \equiv\boldsymbol{\mathrm{r}}\:\boldsymbol{\mathrm{mod}}\left(\mathrm{7}\right)\:\:\:\:\:\:\boldsymbol{\mathrm{r}}=? \\ $$$$\:\:\left(\mathrm{4}\centerdot\mathrm{7}+\mathrm{4}\right)^{\mathrm{32}^{\mathrm{32}\:} } \\ $$$$\:\:\mathrm{4}^{\mathrm{1}} \equiv\mathrm{4}\:\boldsymbol{\mathrm{mod}}\left(\mathrm{7}\right) \\ $$$$\:\mathrm{4}^{\mathrm{2}} \equiv\mathrm{2}\:\boldsymbol{\mathrm{mod}}\left(\mathrm{7}\right) \\ $$$$\:\:\mathrm{4}^{\mathrm{3}} \equiv\mathrm{1}\:\boldsymbol{\mathrm{mod}}\left(\mathrm{7}\right) \\ $$$$\:\:\mathrm{4}^{\mathrm{4}} \equiv\mathrm{4}\:\boldsymbol{\mathrm{mod}}\left(\mathrm{7}\right)\rightarrow\:\:\boldsymbol{\mathrm{T}}=\mathrm{3} \\ $$$$\:\:\:\:\mathrm{32}^{\mathrm{32}} \equiv\boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{mod}}\left(\mathrm{3}\right) \\ $$$$\:\:\:\left(\mathrm{3}\centerdot\mathrm{10}+\mathrm{2}\right)^{\mathrm{32}} \\ $$$$\:\:\:\mathrm{2}^{\mathrm{1}} \equiv\mathrm{2}\:\boldsymbol{\mathrm{mod}}\left(\mathrm{3}\right) \\ $$$$\:\:\:\mathrm{2}^{\mathrm{2}} \equiv\mathrm{1}\:\boldsymbol{\mathrm{mod}}\left(\mathrm{3}\right) \\ $$$$\:\:\:\mathrm{2}^{\mathrm{3}} \equiv\:\mathrm{2}\:\boldsymbol{\mathrm{mod}}\left(\mathrm{3}\right)\:\rightarrow\:\:\boldsymbol{\mathrm{T}}_{\mathrm{2}} =\mathrm{2} \\ $$$$\:\:\mathrm{32}\equiv\mathrm{0}\:\boldsymbol{\mathrm{mod}}\left(\mathrm{2}\right) \\ $$$$\:\:\mathrm{32}^{\mathrm{1}} \equiv\:\mathrm{4}\:\boldsymbol{\mathrm{mod}}\left(\mathrm{7}\right) \\ $$$$\:\:\mathrm{32}^{\mathrm{32}^{\mathrm{32}} } =\:\mathrm{4}\:\boldsymbol{\mathrm{mod}}\left(\mathrm{7}\right) \\ $$$$\:\:\boldsymbol{{ABDULAZIZ}}\:\:\boldsymbol{{ABDUVALIYEV}} \\ $$$$ \\ $$
Commented by BaliramKumar last updated on 20/Feb/23
Thanks Sir
$${Thanks}\:{Sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *