Menu Close

32-32-32-r-mod-7-r-




Question Number 187619 by BaliramKumar last updated on 19/Feb/23
32^(32^(32) )  ≡ r (mod   7)  r = ?
323232r(mod7)r=?
Answered by SEKRET last updated on 19/Feb/23
(32)^(32^(32) ) ≡r mod(7)      r=?    (4∙7+4)^(32^(32 ) )     4^1 ≡4 mod(7)   4^2 ≡2 mod(7)    4^3 ≡1 mod(7)    4^4 ≡4 mod(7)→  T=3      32^(32) ≡x mod(3)     (3∙10+2)^(32)      2^1 ≡2 mod(3)     2^2 ≡1 mod(3)     2^3 ≡ 2 mod(3) →  T_2 =2    32≡0 mod(2)    32^1 ≡ 4 mod(7)    32^(32^(32) ) = 4 mod(7)    ABDULAZIZ  ABDUVALIYEV
(32)3232rmod(7)r=?(47+4)3232414mod(7)422mod(7)431mod(7)444mod(7)T=33232xmod(3)(310+2)32212mod(3)221mod(3)232mod(3)T2=2320mod(2)3214mod(7)323232=4mod(7)ABDULAZIZABDUVALIYEV
Commented by BaliramKumar last updated on 20/Feb/23
Thanks Sir
ThanksSir

Leave a Reply

Your email address will not be published. Required fields are marked *