Menu Close

3sin-2-sin-cos-4cos-2-0-find-the-values-of-if-lies-between-0-and-360-




Question Number 29354 by NECx last updated on 08/Feb/18
3sin^2 θ −sin θcos θ −4cos^2 θ=0  find the values of θ if θ lies  between 0 and 360
3sin2θsinθcosθ4cos2θ=0findthevaluesofθifθliesbetween0and360
Answered by mrW2 last updated on 08/Feb/18
3(1−cos^2  θ) −sin θcos θ −4cos^2 θ=0  3−sin θcos θ −7cos^2 θ=0  6−2sin θcos θ −7(2cos^2 θ)=0  6−sin 2θ −7(1+cos 2θ)=0  sin 2θ+7cos 2θ=−1  sin 2θ×(1/( (√(7^2 +1^1 ))))+cos 2θ×(7/( (√(7^2 +1^2 ))))=−(1/( (√(7^2 +1^2 ))))  sin 2θ×sin α+cos 2θ×cos α=−(1/(5(√2)))  with α=tan^(−1) (1/7)  ⇒cos (2θ−α)=−(1/(5(√2)))  ⇒2θ−α=(2n+1)π±cos^(−1) (1/(5(√2)))  ⇒θ=nπ+(1/2)(π+α±cos^(−1) (1/(5(√2))))  ⇒θ=nπ+(1/2)(π+tan^(−1) (1/7)±cos^(−1) (1/(5(√2))))  ⇒θ=180n+ { ((135°)),((53.1°)) :}  solutions within 0°−360°:  ⇒θ=53.1°, 135°, 233.1°, 315°
3(1cos2θ)sinθcosθ4cos2θ=03sinθcosθ7cos2θ=062sinθcosθ7(2cos2θ)=06sin2θ7(1+cos2θ)=0sin2θ+7cos2θ=1sin2θ×172+11+cos2θ×772+12=172+12sin2θ×sinα+cos2θ×cosα=152withα=tan117cos(2θα)=1522θα=(2n+1)π±cos1152θ=nπ+12(π+α±cos1152)θ=nπ+12(π+tan117±cos1152)θ=180n+{135°53.1°solutionswithin0°360°:θ=53.1°,135°,233.1°,315°
Answered by mrW2 last updated on 08/Feb/18
an other way:  (3sin θ−4cos θ)(sin θ+cos θ)=0  ⇒3sin θ−4cos θ=0  ⇒sin θ+cos θ=0  ⇒tan θ=(4/3)  ⇒tan θ=−1  ⇒θ=nπ+tan^(−1) (4/3) or 180n+53.1°  ⇒θ=nπ−(π/4) or 180n−45°    within 0−360°:  θ=53.1°, 135°, 233.1°, 315°
anotherway:(3sinθ4cosθ)(sinθ+cosθ)=03sinθ4cosθ=0sinθ+cosθ=0tanθ=43tanθ=1θ=nπ+tan143or180n+53.1°θ=nππ4or180n45°within0360°:θ=53.1°,135°,233.1°,315°

Leave a Reply

Your email address will not be published. Required fields are marked *