Menu Close

3x-1-log-3-3x-gt-81x-2-find-the-solution-set-




Question Number 105843 by bobhans last updated on 01/Aug/20
(3x)^(1+log _3 (3x))  > 81x^2   find the solution set
(3x)1+log3(3x)>81x2findthesolutionset
Answered by bemath last updated on 01/Aug/20
(3x)^(1+log _3 (3x))  > 9(3x)^2   (1)domain x > 0  (2) (1+log _3 (3x))(log _3 (3x))>   log _3 (9.(3x)^2 )   ⇒let log _3 (3x) = b   (1+b)(b) > 2+2b  b^2 +b−2b−2 > 0  b^2 −b−2 > 0 → { ((b < −1)),((b >2)) :}  → { ((log _3 (3x) <log _3 ((1/3)))),((log _3 (3x) > log _3 (9))) :}  → { ((x < (1/9))),((x > 3)) :}  solution set : 0 < x < (1/9) ∪ x>3
(3x)1+log3(3x)>9(3x)2(1)domainx>0(2)(1+log3(3x))(log3(3x))>log3(9.(3x)2)letlog3(3x)=b(1+b)(b)>2+2bb2+b2b2>0b2b2>0{b<1b>2{log3(3x)<log3(13)log3(3x)>log3(9){x<19x>3solutionset:0<x<19x>3
Commented by Coronavirus last updated on 01/Aug/20
clean
Answered by bobhans last updated on 01/Aug/20
(3x)^(1+log _3 (3x))  > (3x)^(log _((3x))  (81x^2 ))   (3x−1)(1+log _3 (3x)−log _((3x)) (81x^2 ))>0  (3x−1)(2+log _3 (x)−{((4+2log _3 (x))/(1+log _3 (x)))})>0  (3x−1)(2+log _3 (x))(1−(2/(1+log _3 (x))))>0  (3x−1)(2+log _3 (x))(((log _3 (x)−1)/(1+log _3 (x))))>0  (1) since x >0 then 3x−1 >0  so (((2+log _3 (x))(log _3 (x)−1))/(1+log _3 (x))) >0  let log _3 (x) = υ ⇒ (((2+ϑ)(ϑ−1))/(ϑ+1))>0  → { ((−2<ϑ<−1→(1/9)<x<(1/3))),((ϑ>1→x > 3 )) :}
(3x)1+log3(3x)>(3x)log(3x)(81x2)(3x1)(1+log3(3x)log(3x)(81x2))>0(3x1)(2+log3(x){4+2log3(x)1+log3(x)})>0(3x1)(2+log3(x))(121+log3(x))>0(3x1)(2+log3(x))(log3(x)11+log3(x))>0(1)sincex>0then3x1>0so(2+log3(x))(log3(x)1)1+log3(x)>0letlog3(x)=υ(2+ϑ)(ϑ1)ϑ+1>0{2<ϑ<119<x<13ϑ>1x>3
Answered by 1549442205PVT last updated on 01/Aug/20
We need the condition x>0  Take logarithm both two side of  ineqn. by base 3 we get  (1+log_3 (3x))log_3 (3x)>log_3 (81x^2 )=log_3 81+log_3 (x^2 )  ⇔(2+log_3 x)(1+log_3 x)>2log_3 x+4  Set log_3 x=y we get  (y+2)(1+y)−2y−4>0  ⇔y^2 +y−2>0⇔(y−1)(y+2)>0  ⇔ [((y>1)),((y<−2)) ]⇔ [((log_3 x>1⇔x>3)),((log_3 x<−2⇔0<x<(1/9))) ]  Thus,the roots of the given ineqn.is  x∈(0;(1/9))∪(3;+∞)
Weneedtheconditionx>0Takelogarithmbothtwosideofineqn.bybase3weget(1+log3(3x))log3(3x)>log3(81x2)=log381+log3(x2)(2+log3x)(1+log3x)>2log3x+4Setlog3x=yweget(y+2)(1+y)2y4>0y2+y2>0(y1)(y+2)>0[y>1y<2][log3x>1x>3log3x<20<x<19]Thus,therootsofthegivenineqn.isx(0;19)(3;+)

Leave a Reply

Your email address will not be published. Required fields are marked *