Question Number 108473 by subhankar10 last updated on 17/Aug/20

Answered by Sarah85 last updated on 17/Aug/20

Answered by 1549442205PVT last updated on 17/Aug/20
![3x^3 +4x−3=0(1) Put x=(2/3)y then (1)⇔(8/9)y^3 +(8/3)y−3=0 ⇔y^3 +3y−((27)/8)=0 (2).Put y=z−(1/z) (2)⇔z^3 −(1/z^3 )−3(z−(1/z))+3(z−(1/z))−((27)/8)=0 ⇔z^3 −(1/z^3 )−((27)/8)=0.Put z^3 =t we get t−(1/t)−((27)/8)=0⇔8t^2 −27t−8=0 Δ=27^2 +4.8^2 =729+256=985 ⇒z^3 =t=((27±(√(985)))/(16))⇒z=^3 (√((27±(√(985)))/(16))) ⇒(1/z)=^3 (√((16)/(27±(√(985))))) i)For z=^3 (√((27+(√(985)))/(16)))⇒(1/z)=^3 (√((16)/(27+(√(985))))) we get x_1 =(2/3)y=(2/3)(z−(1/z))= =(2/3)[^3 (√((27+(√(985)))/(16)))−^3 (√((16)/(27+(√(985)))))] ii)For z=^3 (√((27−(√(985)))/(16)))⇒(1/z)=^3 (√((16)/(27−(√(985))))) z−(1/z)= [3(√((27−(√(985)))/(16)))−^3 (√((16)/(27−(√(985)))))] =[^3 (√((−256)/(16(27+(√(985)))))−^3 (√((16(27+(√(985))))/(−256))) =^3 (√((−16)/(27+(√(985)))))−^3 (√((27+(√(985)))/(−16))) =^3 (√((27+(√(985)))/(16)))−^3 (√((16)/(27+(√(985))))) we get x_2 =(2/3)y=(2/3)(z−(1/z))=x_1 Thus,the given equation has unique solution x=(2/3)[3(√((27+(√(985)))/(16)))−^3 (√((16)/(27+(√(985)))))]](https://www.tinkutara.com/question/Q108511.png)
Commented by Sarah85 last updated on 17/Aug/20

Commented by 1549442205PVT last updated on 17/Aug/20
