Menu Close

3x-3-4x-3-0-solve-this-problem-




Question Number 108473 by subhankar10 last updated on 17/Aug/20
3x^3 +4x−3=0  solve this problem.
3x3+4x3=0solvethisproblem.
Answered by Sarah85 last updated on 17/Aug/20
x^3 +(4/3)x−1=0  p=(4/3)∧q=−1 ⇒ D=((p/3))^3 +((q/2))^2 >0 ⇒ Cardano  u=((−(q/2)+(√((p^3 /(27))+(q^2 /4)))))^(1/3) ∧v=−(((q/2)+(√((p^3 /(27))+(q^2 /4)))))^(1/3)   x_1 =u+v  x_2 =ωu+ω^2 v  x_3 =ω^2 u+ωv  where ω=−(1/2)+((√3)/2)i  now put p=(4/3)∧q=−1
x3+43x1=0p=43q=1D=(p3)3+(q2)2>0Cardanou=q2+p327+q243v=q2+p327+q243x1=u+vx2=ωu+ω2vx3=ω2u+ωvwhereω=12+32inowputp=43q=1
Answered by 1549442205PVT last updated on 17/Aug/20
3x^3 +4x−3=0(1)  Put x=(2/3)y then (1)⇔(8/9)y^3 +(8/3)y−3=0  ⇔y^3 +3y−((27)/8)=0 (2).Put y=z−(1/z)  (2)⇔z^3 −(1/z^3 )−3(z−(1/z))+3(z−(1/z))−((27)/8)=0  ⇔z^3 −(1/z^3 )−((27)/8)=0.Put z^3 =t we get  t−(1/t)−((27)/8)=0⇔8t^2 −27t−8=0  Δ=27^2 +4.8^2 =729+256=985  ⇒z^3 =t=((27±(√(985)))/(16))⇒z=^3 (√((27±(√(985)))/(16)))  ⇒(1/z)=^3 (√((16)/(27±(√(985)))))  i)For z=^3 (√((27+(√(985)))/(16)))⇒(1/z)=^3 (√((16)/(27+(√(985)))))  we get  x_1 =(2/3)y=(2/3)(z−(1/z))=  =(2/3)[^3 (√((27+(√(985)))/(16)))−^3 (√((16)/(27+(√(985)))))]  ii)For z=^3 (√((27−(√(985)))/(16)))⇒(1/z)=^3 (√((16)/(27−(√(985)))))  z−(1/z)= [3(√((27−(√(985)))/(16)))−^3 (√((16)/(27−(√(985)))))]  =[^3 (√((−256)/(16(27+(√(985)))))−^3 (√((16(27+(√(985))))/(−256)))  =^3 (√((−16)/(27+(√(985)))))−^3 (√((27+(√(985)))/(−16)))  =^3 (√((27+(√(985)))/(16)))−^3 (√((16)/(27+(√(985)))))  we get x_2 =(2/3)y=(2/3)(z−(1/z))=x_1   Thus,the given equation has unique  solution x=(2/3)[3(√((27+(√(985)))/(16)))−^3 (√((16)/(27+(√(985)))))]
3x3+4x3=0(1)Putx=23ythen(1)89y3+83y3=0y3+3y278=0(2).Puty=z1z(2)z31z33(z1z)+3(z1z)278=0z31z3278=0.Putz3=twegett1t278=08t227t8=0Δ=272+4.82=729+256=985z3=t=27±98516z=327±985161z=31627±985i)Forz=327+985161z=31627+985wegetx1=23y=23(z1z)==23[327+9851631627+985]ii)Forz=327985161z=31627985z1z=[3279851631627985]=[325616(27+985316(27+985)256=31627+985327+98516=327+9851631627+985wegetx2=23y=23(z1z)=x1Thus,thegivenequationhasuniquesolutionx=23[327+9851631627+985]
Commented by Sarah85 last updated on 17/Aug/20
we′ve got Cardano′s solution formula and  for the cases where D<0 there′s a trigonometric  solution formula. no need to solve each single  case like this.  and btw a 3rd degree polynomial always has  three solutions
wevegotCardanossolutionformulaandforthecaseswhereD<0theresatrigonometricsolutionformula.noneedtosolveeachsinglecaselikethis.andbtwa3rddegreepolynomialalwayshasthreesolutions
Commented by 1549442205PVT last updated on 17/Aug/20
The above solution only mention to  real roots.If you want to find two other  complex roots then they are  in the cubic   root of z^3 =((27±(√(985)))/(16)) because the cubic    root of an arbitrary number  has always   three different  values in field of   complex number
Theabovesolutiononlymentiontorealroots.Ifyouwanttofindtwoothercomplexrootsthentheyareinthecubicrootofz3=27±98516becausethecubicrootofanarbitrarynumberhasalwaysthreedifferentvaluesinfieldofcomplexnumber

Leave a Reply

Your email address will not be published. Required fields are marked *