Menu Close

3x-3y-4-dy-dx-x-y-




Question Number 93620 by i jagooll last updated on 14/May/20
(3x+3y−4) (dy/dx) = x+y
$$\left(\mathrm{3x}+\mathrm{3y}−\mathrm{4}\right)\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{x}+\mathrm{y}\: \\ $$
Answered by john santu last updated on 14/May/20
r = x+y ⇒ (dr/dx) = 1+ (dy/dx)  (3r−4)((dr/dx)−1) = r   (dr/dx) = (r/(3r−4)) + ((3r−4)/(3r−4)) = ((4r−4)/(3r−4))  (((3r−4))/(r−1)) dr = 4 dx   ∫((3(r−1)−1)/(r−1)) dr = 4x + c   3r − ln (r−1) = 4x + c   3x+3y−ln(x+y−1) = 4x+c   3y−ln(x+y−1)−x = C
$${r}\:=\:{x}+{y}\:\Rightarrow\:\frac{{dr}}{{dx}}\:=\:\mathrm{1}+\:\frac{{dy}}{{dx}} \\ $$$$\left(\mathrm{3}{r}−\mathrm{4}\right)\left(\frac{{dr}}{{dx}}−\mathrm{1}\right)\:=\:{r}\: \\ $$$$\frac{{dr}}{{dx}}\:=\:\frac{{r}}{\mathrm{3}{r}−\mathrm{4}}\:+\:\frac{\mathrm{3}{r}−\mathrm{4}}{\mathrm{3}{r}−\mathrm{4}}\:=\:\frac{\mathrm{4}{r}−\mathrm{4}}{\mathrm{3}{r}−\mathrm{4}} \\ $$$$\frac{\left(\mathrm{3}{r}−\mathrm{4}\right)}{{r}−\mathrm{1}}\:{dr}\:=\:\mathrm{4}\:{dx}\: \\ $$$$\int\frac{\mathrm{3}\left({r}−\mathrm{1}\right)−\mathrm{1}}{{r}−\mathrm{1}}\:{dr}\:=\:\mathrm{4}{x}\:+\:{c}\: \\ $$$$\mathrm{3}{r}\:−\:\mathrm{ln}\:\left({r}−\mathrm{1}\right)\:=\:\mathrm{4}{x}\:+\:{c}\: \\ $$$$\mathrm{3}{x}+\mathrm{3}{y}−\mathrm{ln}\left({x}+{y}−\mathrm{1}\right)\:=\:\mathrm{4}{x}+{c}\: \\ $$$$\mathrm{3}{y}−\mathrm{ln}\left({x}+{y}−\mathrm{1}\right)−{x}\:=\:{C}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *