Question Number 119290 by bobhans last updated on 23/Oct/20
$$\:\:\left(\mathrm{3}{x}−{y}+\mathrm{1}\right)\:{dx}\:+\left(\mathrm{6}{x}+\mathrm{2}{y}−\mathrm{3}\right)\:{dy}\:=\:\mathrm{0}\: \\ $$
Answered by TANMAY PANACEA last updated on 23/Oct/20
$${dy}\left(\mathrm{6}{x}+\mathrm{2}{y}−\mathrm{3}\right)=\left(−\mathrm{3}{x}+{y}−\mathrm{1}\right){dx} \\ $$$$\frac{{dy}}{{dx}}=\frac{−\mathrm{3}{x}+{y}−\mathrm{1}}{\mathrm{6}{x}+\mathrm{2}{y}−\mathrm{3}} \\ $$$${x}={X}+{h} \\ $$$${y}={Y}+{k} \\ $$$$\frac{{dY}}{{dX}}=\frac{−\mathrm{3}\left({X}+{h}\right)+\left({Y}+{k}\right)−\mathrm{1}}{\mathrm{6}\left({X}+{h}\right)+\mathrm{2}\left({Y}+{k}\right)−\mathrm{3}} \\ $$$$\frac{{dY}}{{dX}}=\frac{−\mathrm{3}{X}+{Y}}{\mathrm{6}{X}+\mathrm{2}{Y}} \\ $$$${note}\:\:−\mathrm{3}{h}+{k}−\mathrm{1}=\mathrm{0} \\ $$$${and}\:\:\mathrm{6}{h}+\mathrm{2}{k}−\mathrm{3}=\mathrm{0} \\ $$$$−\mathrm{3}{h}+{k}−\mathrm{1}=\mathrm{0}\:×\mathrm{2} \\ $$$$−\mathrm{6}{h}+\mathrm{2}{k}−\mathrm{2}=\mathrm{0} \\ $$$$\mathrm{6}{h}+\mathrm{2}{k}−\mathrm{3}=\mathrm{0} \\ $$$${so}\:\mathrm{4}{k}=\mathrm{5}\rightarrow{k}=\frac{\mathrm{5}}{\mathrm{4}} \\ $$$$\mathrm{12}{h}−\mathrm{1}=\mathrm{0}\rightarrow{h}=\frac{\mathrm{1}}{\mathrm{12}} \\ $$$$\frac{{dY}}{{dX}}=\frac{−\mathrm{3}{X}+{Y}}{\mathrm{6}{X}+\mathrm{2}{Y}}=\frac{−\mathrm{3}+\frac{{Y}}{{X}}}{\mathrm{6}+\frac{\mathrm{2}{Y}}{{X}}}\rightarrow\left({homogeneous}\:{function}\right) \\ $$$$\frac{{Y}}{{X}}={v}\rightarrow\frac{{dY}}{{dX}}={v}+{X}\frac{{dv}}{{dX}} \\ $$$${v}+{X}\frac{{dv}}{{dX}}=\frac{−\mathrm{3}+{v}}{\mathrm{6}+\mathrm{2}{v}} \\ $$$${X}\frac{{dv}}{{dX}}=\frac{−\mathrm{3}+{v}−\mathrm{6}{v}−\mathrm{2}{v}^{\mathrm{2}} }{\mathrm{6}+\mathrm{2}{v}} \\ $$$$\frac{\mathrm{6}+\mathrm{2}{v}}{−\mathrm{2}{v}^{\mathrm{2}} −\mathrm{5}{v}−\mathrm{3}}{dv}=\frac{{dX}}{{X}} \\ $$$$\frac{\mathrm{6}+\mathrm{2}{v}}{\mathrm{2}{v}^{\mathrm{2}} +\mathrm{5}{v}+\mathrm{3}}+\frac{{dX}}{{X}}={dC} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{4}{v}+\mathrm{5}+\mathrm{7}}{\mathrm{2}{v}^{\mathrm{2}} +\mathrm{5}{v}+\mathrm{3}}{dv}+\int\frac{{dX}}{{X}}=\int{dC} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{d}\left(\mathrm{2}{v}^{\mathrm{2}} +\mathrm{5}{v}+\mathrm{3}\right)}{\mathrm{2}{v}^{\mathrm{2}} +\mathrm{5}{v}+\mathrm{3}}+\frac{\mathrm{7}}{\mathrm{4}}\int\frac{{dv}}{{v}^{\mathrm{2}} +\frac{\mathrm{5}{v}}{\mathrm{2}}+\frac{\mathrm{3}}{\mathrm{2}}}+\int\frac{{dX}}{{X}}=\int{dC} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{d}\left(\mathrm{2}{v}^{\mathrm{2}} +\mathrm{5}{v}+\mathrm{3}\right)}{\mathrm{2}{v}^{\mathrm{2}} +\mathrm{5}{v}+\mathrm{3}}+\frac{\mathrm{7}}{\mathrm{4}}\int\frac{{dv}}{{v}^{\mathrm{2}} +\mathrm{2}×{v}×\frac{\mathrm{5}}{\mathrm{4}}+\frac{\mathrm{25}}{\mathrm{16}}+\frac{\mathrm{3}}{\mathrm{2}}−\frac{\mathrm{25}}{\mathrm{16}}}+\int\frac{{dX}}{{X}}=\int{dC} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{d}\left(\mathrm{2}{v}^{\mathrm{2}} +\mathrm{5}{v}+\mathrm{3}\right)}{\mathrm{2}{v}^{\mathrm{2}} +\mathrm{5}{v}+\mathrm{3}}+\frac{\mathrm{7}}{\mathrm{4}}\int\frac{{dv}}{\left({v}+\frac{\mathrm{5}}{\mathrm{4}}\right)^{\mathrm{2}} −\left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}} }+\int\frac{{dX}}{{X}}=\int{dC} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}{v}^{\mathrm{2}} +\mathrm{5}{v}+\mathrm{3}\right)+\frac{\mathrm{7}}{\mathrm{4}}\int{pls}\:{use}\:{formula}+{lnX}={C} \\ $$$${now}\:\:{v}=\frac{{Y}}{{X}}=\frac{{y}−{k}}{{X}−{h}}=\frac{{y}−\frac{\mathrm{5}}{\mathrm{4}}}{{x}−\frac{\mathrm{1}}{\mathrm{12}}} \\ $$
Commented by Dwaipayan Shikari last updated on 23/Oct/20
$$\frac{\mathrm{7}}{\mathrm{4}}\int\frac{{dv}}{\left({v}+\frac{\mathrm{5}}{\mathrm{4}}\right)^{\mathrm{2}} −\left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}} }=\frac{\mathrm{7}}{\mathrm{2}}{log}\left(\frac{{v}+\frac{\mathrm{5}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{4}}}{{v}+\frac{\mathrm{6}}{\mathrm{4}}}\right)=\frac{\mathrm{7}}{\mathrm{2}}{log}\left(\frac{\mathrm{2}{v}+\mathrm{2}}{\mathrm{2}{v}+\mathrm{3}}\right) \\ $$
Commented by TANMAY PANACEA last updated on 23/Oct/20
$${thank}\:{you} \\ $$