4-1-x-x-4-2-x-a-1-a-x-1-2-a-x-2-x-exp-a-x-x-x-exp-i-a-p-h-4-3-U-a-U-a-exp-ia-p-h-translat Tinku Tara June 4, 2023 Moderm Physics 0 Comments FacebookTweetPin Question Number 118633 by wsyip last updated on 18/Oct/20 (4.1)ψμ(x)≡⟨x,μ∣ψ⟩(4.2)ψμ(x−a)=[1−a∙∂∂x+12!(a∙∂∂x)2−…]ψμ(x)=exp(−a∙∂∂x)ψμ(x)=⟨x,μ∣exp(−ia∙ph¯)∣ψ⟩(4.3)∣ψ′⟩≡U(a)∣ψ⟩;U(a)≡exp(−ia∙p/h¯)translationoperator(4.4)ψμ(x−a)=⟨x,μ∣U(a)∣ψ⟩=⟨x,μ∣ψ′⟩=ψμ′(x)(4.5)ih¯∂∣ψ⟩∂ax=−ih¯∂∣ψ⟩∂x=px∣ψ⟩−−Passivetransformations(1)ψμ(x;a+y)=exp(a∙∂∂y)ψμ(x;y)(2)⟨x,μ;0∣U(−a)∣ψ⟩=ψμ(x+a;0)=ψμ(x;a)(4.6)∣x0,μ⟩=∫d3p∣p,μ⟩⟨p,μ∣x0,μ⟩=1h3/2∫d3pe−ix0∙p/h¯∣p,μ⟩(4.7)U(a)∣x0,μ⟩=1h3/2∫d3pe−ix0∙p/h¯U(a)∣p,μ⟩=1h3/2∫d3pe−i(x0+a)∙p/h¯∣p,μ⟩=∣x0,a⟩,μ⟩Operatorsfromexpectationvalues(1)⟨ψ∣A∣ψ⟩=⟨ψ∣B∣ψ⟩(2)λ(⟨∅∣A∣χ⟩−⟨∅∣B∣χ⟩)=λ∗(⟨χ∣B∣∅⟩−⟨χ∣A∣∅⟩)(4.8)1=⟨ψ′∣ψ′⟩=⟨ψ∣U+U∣ψ⟩unitiryoperatorU+U=I;U+=U−1(4.9)U(δθ)=I−iδθτ+O(δθ)2(4.10)I=U+(δθ)U(δθ)=I+iδθ((τ+−τ)+O(δθ)2(4.11)i∂∣ψ′⟩∂θ=τ∣ψ′⟩(4.12)U(θ)≡limN→∞(1−iθNτ)N=e−iθττ(hermition)=generatorofU&thetransformation(4.13)U(α)=exp(−iα∙J);Ji:angular−momentumoperators(4.14)i∂∣ψ⟩∂α=α^∙J∣ψ⟩q(4.15)paritytransformationP≡(−1000−1000−1);Px=−x(4.16)quantumparityoperatorP:Pψμ′(x)≡⟨x,μ∣P∣ψ⟩≡ψμ(Px)=ψμ(−x)=⟨−x,μ∣ψ⟩(4.17)ψμ″(x)=⟨x,μ∣P∣ψ′⟩=⟨−x,μ∣ψ′⟩=⟨−x,μ∣P∣ψ⟩=⟨x,μ∣ψ⟩=ψμ(x)(4.18)⟨∅∣P∣ψ⟩∗=∫d3x∑μ(⟨∅⇂x,μ⟩⟨x,μ⇂P⇂ψ⟩)∗=∫d3x∑μ(⟨∅⇂x,μ⟩⟨−x,μ⇂ψ⟩)∗=∫d3x∑μ(⟨ψ⇂−x,μ⟩⟨x,μ⇂P2⇂∅⟩)=∫d3x∑μ(⟨ψ⇂−x,μ⟩⟨−x,μ⇂P⇂∅⟩)=⟨ψ∣P∣∅⟩(4.19)Mirroroperators⟨x,y∣M∣ψ⟩=⟨y,x∣ψ⟩(4.20)U+(a)xU(a)=x+a(4.21)x+δa⋍(1+iδa∙ph¯)x(1−iδa∙ph¯)=x−ih¯[x,δa∙p]+O(δa)2(4.22)[xi,pj]=ih¯δij(4.23)U+(a)xU(a)=U+(a)U(a)x+U+(a)[x,U(a)]=x+U+(a)[x,U(a)](4.24)U+(a)xU(a)=x−ih¯U+(a)[x,a∙p]U(a)=x+aRotationsinordinaryspaceRT=R−1;det(R)=+1;R(α)α^=α^TrR(α)=1+2cos∣α∣;v′=v+α×v(4.25)R(α)⟨ψ∣x∣ψ⟩=⟨ψ′∣x∣ψ′⟩=⟨ψ∣U+(α)xU(α)∣ψ⟩(4.26)R(α)x=U+(α)xU(α)(4.27)x+δα×x⋍(1+iδα∙J)x(1−iδα∙J)=x+i[δα∙J,x]+O(δα)2(4.28)(δα×x)i=∑ijϵijkδαjxk(4.29)∑ijϵijkδαjxk=i∑jδαj[Jj,xi](4.30)[Ji,xj]=i∑kϵijkxk(4.31)[Ji,vj]=i∑kϵijkvk(4.32)[Ji,pj]=i∑kϵijkpk(4.33)[Ji,Jj]=i∑kϵijkJk(4.34)⟨ψ′∣S∣ψ′⟩=⟨ψ∣U+(α)SU(α)∣ψ⟩=⟨ψ∣S∣ψ⟩(4.35)S⋍(1+iδα∙J)S(1−iδα∙J)=S+iδα∙[J,S]+O(δα)2(4.36)[J,S]=0(4.37)[J,J2]=0(4.38)Theparityoperator:x→Px=−x−⟨ψ∣x∣ψ⟩=P⟨ψ∣x∣ψ⟩=⟨ψ′∣x∣ψ′⟩=⟨ψ∣P+xP∣ψ⟩(4.39){x,P}≡xP+Px=0(4.40){v,P}≡vP+Pv=0(4.41)v⇂ω′⟩=v(P⇂ω⟩)=−Pv⇂ω⟩=−ωP⇂ω⟩=−ω⇂ω′⟩(4.42)−⟨±∣v∣±⟩=P⟨±∣v∣±⟩=⟨±∣P+vP∣±⟩=(±)2⟨±∣v∣±⟩(4.43a)⟨x∣PV∣ψ⟩=⟨−x∣V∣ψ⟩=V(−x)⟨−x∣ψ⟩=V(x)⟨−x∣ψ⟩(4.43b)⟨x∣VP∣ψ⟩=V(x)⟨x∣P∣ψ⟩=V(x)⟨−x∣ψ⟩(4.44)p2P=∑kpkpkP=−∑kpkPpk=∑kPpkpk=Pp2⇒[p2,P]=0(4.45){P,[vi,Jj]}=i∑kϵijk{P,vk}=0(4.46)0={P,[vi,Jj]}=[{P,vi},Jj]−{[P,Jj],vi}=−{[P,Jj],vi}(4.47)[P,Jj]=λP(4.48)⟨ψ′∣J∣ψ′⟩=⟨ψ∣P+JP∣ψ⟩=⟨ψ∣J∣ψ⟩(4.48)⟨ψ∣M+xM∣ψ⟩=⟨ψ∣y∣ψ⟩Mirroroperators(4.50)M+xM=y⇒xM=My(4.51)∣ψ,t⟩=e−iHt/h¯∣ψ,0⟩(4.52)U(t)=e−iHt/h¯time−evolutionoperator(4.53)U(θ)U(t)∣ψ⟩=U(t)U(θ)∣ψ⟩(4.54a)⟨x∣VU(α)∣ψ⟩=V(x)⟨x∣U(α)∣ψ⟩=V(x)⟨R(α)x∣ψ⟩(4.54b)⟨x∣U(α)V∣ψ⟩=⟨R(α)x∣V∣ψ⟩=V(R(α)x)⟨R(α)x∣ψ⟩(4.55)H=∑ni=1pi22mi+∑i<jV(xi−xj)(4.56)∣ψ,t⟩=U(t)∣ψ,0⟩(4.57)Q∼t≡U+(t)QU(t)(4.58)⟨Q⟩t=⟨ψ,t∣Q∣ψ,t⟩=⟨ψ,0∣U+(t)QU(t)∣ψ,0⟩=⟨ψ,0∣Q∼t∣ψ,0⟩(4.59)⟨∅,t⇂ψ,t⟩=⟨∅,0⇂ψ,0⟩;∣∅,t⟩≡U(t)∣∅,0⟩(4.60)dQ∼tdt=dU+dtQU+U+QdUdt(4.61)dUdt=−iHh¯U⇒dU+dt=iHh¯U+(4.62)ih¯dQ∽tdt=−HU+QU+U+QUH=[Q∽t,H](4.63)exp(−iα∙J)≡R(α)(4.64)I=RT(α)R(α)=exp(−iα∙J)Texp(−iα∙J)=exp(−iα∙JT)exp(−iα∙J)(4.65)0=−in∙JTexp(−iθn∙JT)exp(−iθn∙J)+exp(−iθn∙JT)exp(−iθn∙J)(−in∙J)−in∙{JT+J}(4.66){RT(α)R(β)R(α)}β′=RT(α)R(β)β=RT(α)β′(4.67)RT(α)R(β)R(α)=R(β′)=R(R(−α)β)(4.68)(1+iα∙J)(1+iβ∙J)(1−iα∙J)⋍1−i(β−α×β)∙J(4.69)αiβj[Ji,Jj]=iαiβj∑kϵijkJk(4.70)[Ji,Jj]=i∑kϵijkJk(4.71)Prob(atx⇂ψ)=∑μ∣⟨x,μ⇂ψ⟩∣2(4.72)R(∅)=(cos∅−sin∅0sin∅cos∅0001)(4.73)Jz′=≡M∙Jz∙M+(4.74)Sx=12(010101010);Sy=12(0−i0i0−i0i0);Sz=(10000000−1)(4.75)⟨x∣p⟩=eip∙x/h¯(4.76)[{A,B},C]={A,[B,C]}+{[A,C],B}(4.77)G≡12(1−P)(4.78)S⟨ψ∣x∣ψ⟩=⟨ψ∣S+xS∣ψ⟩(4.79)Sij=δij−2ninj(4.80)V(x)=f(R)+λxy;R=x2+y2 Commented by Dwaipayan Shikari last updated on 18/Oct/20 Kindlydon′tmarkitasinappropiate.Therearemanyderivationsinphysics. Commented by Dwaipayan Shikari last updated on 18/Oct/20 ATheoreticalphysicist Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Given-a-0-1-a-n-1-1-2-3a-n-5a-n-2-4-n-0-n-I-find-a-n-Next Next post: Prove-that-the-equation-of-the-circle-passing-through-the-points-of-intersection-of-these-two-curves-y-1-c-x-y-x-2-c-lt-2-3-3-is-x-c-2-2-y-1-2-1-c-2-4- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.