Menu Close

4-1-x-x-4-2-x-a-1-a-x-1-2-a-x-2-x-exp-a-x-x-x-exp-i-a-p-h-4-3-U-a-U-a-exp-ia-p-h-translat




Question Number 118633 by wsyip last updated on 18/Oct/20
  (4.1)   ψ_μ (x)≡⟨x,μ∣ψ⟩  (4.2)   ψ_μ (x−a)=[1−a•(∂/∂x)+(1/(2!))(a•(∂/∂x))^2 −…]ψ_μ (x)        =exp(−a•(∂/∂x))ψ_μ (x)=⟨x,μ∣exp(−i((a•p)/h^� ))∣ψ⟩  (4.3)   ∣ψ^′ ⟩≡U(a)∣ψ⟩   ; U(a)≡exp(−ia•p/h^� ) translation operator  (4.4)   ψ_μ (x−a)=⟨x,μ∣U(a)∣ψ⟩=⟨x,μ∣ψ^′ ⟩=ψ_μ ^′ (x)  (4.5)   ih^� ((∂∣ψ⟩)/∂a_x )=−ih^� ((∂∣ψ⟩)/∂x)=p_x ∣ψ⟩−−  Passive transformations  (1)   ψ_μ (x;a+y)=exp(a•(∂/∂y))ψ_μ (x;y)  (2)   ⟨x,μ;0∣U(−a)∣ψ⟩=ψ_μ (x+a;0)=ψ_μ (x;a)  (4.6)   ∣x_0 ,μ⟩=∫d^3 p∣p,μ⟩⟨p,μ∣x_0 ,μ⟩=(1/h^(3/2) )∫d^3 pe^(−ix_0 •p/h^� ) ∣p,μ⟩  (4.7)   U(a)∣x_0 ,μ⟩=(1/h^(3/2) )∫d^3 pe^(−ix_0 •p/h^� ) U(a)∣p,μ⟩        =(1/h^(3/2) )∫d^3 pe^(−i(x_0 +a)•p/h^� ) ∣p,μ⟩        =∣x_0 ,a⟩,μ⟩  Operators from expectation values  (1)   ⟨ψ∣A∣ψ⟩=⟨ψ∣B∣ψ⟩  (2)   λ(⟨∅∣A∣χ⟩−⟨∅∣B∣χ⟩)=λ^∗ (⟨χ∣B∣∅⟩−⟨χ∣A∣∅⟩)  (4.8)   1=⟨ψ^′ ∣ψ^′ ⟩=⟨ψ∣U^+ U∣ψ⟩  unitiry operator U^+ U=I   ; U^+ =U^(−1)   (4.9)   U(δθ)=I−iδθτ+O(δθ)^2   (4.10)  I=U^+ (δθ)U(δθ)=I+iδθ((τ^+ −τ)+O(δθ)^2   (4.11)  i((∂∣ψ^′ ⟩)/∂θ)=τ∣ψ^′ ⟩  (4.12)  U(θ)≡lim_(N→∞) (1−i(θ/N)τ)^N =e^(−iθτ)         τ (hermition) = generator of U & the transformation  (4.13)  U(𝛂)=exp(−i𝛂•J)   ; J_i :angular-momentum operators  (4.14)  i((∂∣ψ⟩)/∂α)=𝛂^� •J∣ψ⟩q  (4.15)  parity transformation        P≡ (((−1),0,0),(0,(−1),0),(0,0,(−1)) )    ; Px=−x  (4.16)  quantum parity operator P:        P ψ_μ ^′ (x)≡⟨x,μ∣P∣ψ⟩≡ψ_μ (Px)=ψ_μ (−x)=⟨−x,μ∣ψ⟩  (4.17)  ψ_μ ^(′′) (x)=⟨x,μ∣P∣ψ^′ ⟩=⟨−x,μ∣ψ^′ ⟩        =⟨−x,μ∣P∣ψ⟩=⟨x,μ∣ψ⟩=ψ_μ (x)   (4.18)  ⟨∅∣P∣ψ⟩^∗ =∫d^3 xΣ_μ (⟨∅⇂x,μ⟩⟨x,μ⇂P⇂ψ⟩)^∗         =∫d^3 xΣ_μ (⟨∅⇂x,μ⟩⟨−x,μ⇂ψ⟩)^∗         =∫d^3 xΣ_μ (⟨ψ⇂−x,μ⟩⟨x,μ⇂P^2 ⇂∅⟩)        =∫d^3 xΣ_μ (⟨ψ⇂−x,μ⟩⟨−x,μ⇂P⇂∅⟩)=⟨ψ∣P∣∅⟩  (4.19)  Mirror operators        ⟨x,y∣M∣ψ⟩=⟨y,x∣ψ⟩  (4.20)  U^+ (a)xU(a)=x+a  (4.21)  x+δa⋍(1+i((δa•p)/h^� ))x(1−i((δa•p)/h^� ))        =x−(i/h^� )[x,δa•p]+O(δa)^2   (4.22)  [x_i ,p_j ]=ih^� δ_(ij)   (4.23)  U^+ (a)xU(a)=U^+ (a)U(a)x+U^+ (a)[x,U(a)]=x+U^+ (a)[x,U(a)]  (4.24)  U^+ (a)xU(a)=x−(i/h^� )U^+ (a)[x,a•p]U(a)=x+a  Rotations in ordinary space        R^T =R^(−1)    ; det(R)=+1   ; R(𝛂)𝛂^� =𝛂^�         TrR(𝛂)=1+2cos∣𝛂∣   ; v^′ =v+𝛂×v  (4.25)  R(𝛂)⟨ψ∣x∣ψ⟩=⟨ψ^′ ∣x∣ψ^′ ⟩=⟨ψ∣U^+ (𝛂)xU(𝛂)∣ψ⟩  (4.26)  R(𝛂)x=U^+ (𝛂)xU(𝛂)  (4.27)  x+δ𝛂×x⋍(1+iδ𝛂•J)x(1−iδ𝛂•J)        =x+i[δ𝛂•J,x]+O(δ𝛂)^2   (4.28)  (δ𝛂×x)_i =Σ_(ij) ε_(ijk) δα_j x_k   (4.29)  Σ_(ij) ε_(ijk) δα_j x_k =iΣ_j δα_j [J_j ,x_i ]  (4.30)  [J_i ,x_j ]=iΣ_k ε_(ijk) x_k   (4.31)  [J_i ,v_j ]=iΣ_k ε_(ijk) v_k   (4.32)  [J_i ,p_j ]=iΣ_k ε_(ijk) p_k   (4.33)  [J_i ,J_j ]=iΣ_k ε_(ijk) J_k   (4.34)  ⟨ψ^′ ∣S∣ψ^′ ⟩=⟨ψ∣U^+ (𝛂)SU(𝛂)∣ψ⟩=⟨ψ∣S∣ψ⟩  (4.35)  S⋍(1+iδ𝛂•J)S(1−iδ𝛂•J)        =S+iδ𝛂•[J,S]+O(δ𝛂)^2   (4.36)  [J,S]=0  (4.37)  [J,J^2 ]=0  (4.38)  The parity operator: x→Px=−x        −⟨ψ∣x∣ψ⟩=P⟨ψ∣x∣ψ⟩=⟨ψ^′ ∣x∣ψ^′ ⟩=⟨ψ∣P^+ xP∣ψ⟩  (4.39)  {x,P}≡xP+Px=0  (4.40)  {v,P}≡vP+Pv=0  (4.41)  v⇂𝛚^′ ⟩=v(P⇂𝛚⟩)=−Pv⇂𝛚⟩=−𝛚P⇂𝛚⟩=−𝛚⇂𝛚^′ ⟩  (4.42)  −⟨±∣v∣±⟩=P⟨±∣v∣±⟩=⟨±∣P^+ vP∣±⟩=(±)^2 ⟨±∣v∣±⟩  (4.43a) ⟨x∣PV∣ψ⟩=⟨−x∣V∣ψ⟩=V(−x)⟨−x∣ψ⟩=V(x)⟨−x∣ψ⟩  (4.43b) ⟨x∣VP∣ψ⟩=V(x)⟨x∣P∣ψ⟩=V(x)⟨−x∣ψ⟩  (4.44)  p^2 P=Σ_k p_k p_k P=−Σ_k p_k Pp_k =Σ_k Pp_k p_k =Pp^2         ⇒[p^2 ,P]=0  (4.45)  {P,[v_i ,J_j ]}=iΣ_k ε_(ijk) {P,v_k }=0  (4.46)  0={P,[v_i ,J_j ]}=[{P,v_i },J_j ]−{[P,J_j ],v_i }=−{[P,J_j ],v_i }  (4.47)  [P,J_j ]=λP  (4.48)  ⟨ψ^′ ∣J∣ψ^′ ⟩=⟨ψ∣P^+ JP∣ψ⟩=⟨ψ∣J∣ψ⟩  (4.48)  ⟨ψ∣M^+ xM∣ψ⟩=⟨ψ∣y∣ψ⟩   Mirror operators  (4.50)  M^+ xM=y ⇒ xM=My  (4.51)  ∣ψ,t⟩=e^(−iHt/h^� ) ∣ψ,0⟩  (4.52)  U(t)=e^(−iHt/h^� )    time-evolution operator  (4.53)  U(θ)U(t)∣ψ⟩=U(t)U(θ)∣ψ⟩  (4.54a) ⟨x∣VU(𝛂)∣ψ⟩=V(x)⟨x∣U(𝛂)∣ψ⟩=V(x)⟨R(𝛂)x∣ψ⟩  (4.54b) ⟨x∣U(𝛂)V∣ψ⟩=⟨R(𝛂)x∣V∣ψ⟩=V(R(𝛂)x)⟨R(𝛂)x∣ψ⟩  (4.55)  H=Σ_(i=1) ^n (p_i ^2 /(2m_i ))+Σ_(i<j) V(x_i −x_j )  (4.56)  ∣ψ,t⟩=U(t)∣ψ,0⟩  (4.57)  Q_t ^∼ ≡U^+ (t)QU(t)  (4.58)  ⟨Q⟩_t =⟨ψ,t∣Q∣ψ,t⟩=⟨ψ,0∣U^+ (t)QU(t)∣ψ,0⟩=⟨ψ,0∣Q_t ^∼ ∣ψ,0⟩  (4.59)  ⟨∅,t⇂ψ,t⟩=⟨∅,0⇂ψ,0⟩   ; ∣∅,t⟩≡U(t)∣∅,0⟩  (4.60)  (dQ_t ^∼ /dt)=(dU^+ /dt)QU+U^+ Q(dU/dt)  (4.61)  (dU/dt)=−((iH)/h^� )U⇒(dU^+ /dt)=((iH)/h^� )U^+   (4.62)  ih^� (dQ_t ^∽ /dt)=−HU^+ QU+U^+ QUH=[Q_t ^∽ ,H]  (4.63)  exp(−i𝛂•J)≡R(𝛂)  (4.64)  I=R^T (𝛂)R(𝛂)=exp(−i𝛂•J)^T exp(−i𝛂•J)        =exp(−i𝛂•J^T )exp(−i𝛂•J)  (4.65)  0=−in•J^T exp(−iθn•J^T )exp(−iθn•J)        +exp(−iθn•J^T )exp(−iθn•J)(−in•J)        −in•{J^T +J}  (4.66)  {R^T (𝛂)R(𝛃)R(𝛂)}𝛃^′ =R^T (𝛂)R(𝛃)𝛃=R^T (𝛂)𝛃^′   (4.67)  R^T (𝛂)R(𝛃)R(𝛂)=R(𝛃^′ )=R(R(−𝛂)𝛃)  (4.68)  (1+i𝛂•J)(1+i𝛃•J)(1−i𝛂•J)⋍1−i(𝛃−𝛂×𝛃)•J  (4.69)  α_i β_j [J_i ,J_j ]=iα_i β_j Σ_k ε_(ijk) J_k   (4.70)  [J_i ,J_j ]=iΣ_k ε_(ijk) J_k   (4.71)  Prob(at x⇂ψ)=Σ_μ ∣⟨x,μ⇂ψ⟩∣^2   (4.72)  R(∅)= (((cos ∅),(−sin ∅),0),((sin ∅),(cos ∅),0),(0,0,1) )  (4.73)  J_z ^′ =≡M•J_z •M^+   (4.74)  S_x =(1/( (√2))) ((0,1,0),(1,0,1),(0,1,0) )  ; S_y =(1/( (√2))) ((0,(−i),0),(i,0,(−i)),(0,i,0) )  ; S_z = ((1,0,0),(0,0,0),(0,0,(−1)) )   (4.75)  ⟨x∣p⟩=e^(ip•x/h^� )   (4.76)  [{A,B},C]={A,[B,C]}+{[A,C],B}  (4.77)  G≡(1/2)(1−P)  (4.78)  S⟨ψ∣x∣ψ⟩=⟨ψ∣S^+ xS∣ψ⟩  (4.79)  S_(ij) =δ_(ij) −2n_i n_j   (4.80)  V(x)=f(R)+λxy   ; R=(√(x^2 +y^2 ))
$$ \\ $$$$\left(\mathrm{4}.\mathrm{1}\right)\:\:\:\psi_{\mu} \left(\boldsymbol{{x}}\right)\equiv\langle\boldsymbol{{x}},\mu\mid\psi\rangle \\ $$$$\left(\mathrm{4}.\mathrm{2}\right)\:\:\:\psi_{\mu} \left(\boldsymbol{{x}}−\boldsymbol{{a}}\right)=\left[\mathrm{1}−\boldsymbol{{a}}\bullet\frac{\partial}{\partial\boldsymbol{{x}}}+\frac{\mathrm{1}}{\mathrm{2}!}\left(\boldsymbol{{a}}\bullet\frac{\partial}{\partial\boldsymbol{{x}}}\right)^{\mathrm{2}} −\ldots\right]\psi_{\mu} \left(\boldsymbol{{x}}\right) \\ $$$$\:\:\:\:\:\:={exp}\left(−\boldsymbol{{a}}\bullet\frac{\partial}{\partial\boldsymbol{{x}}}\right)\psi_{\mu} \left(\boldsymbol{{x}}\right)=\langle\boldsymbol{{x}},\mu\mid{exp}\left(−{i}\frac{\boldsymbol{{a}}\bullet\boldsymbol{{p}}}{\bar {{h}}}\right)\mid\psi\rangle \\ $$$$\left(\mathrm{4}.\mathrm{3}\right)\:\:\:\mid\psi^{'} \rangle\equiv{U}\left(\boldsymbol{{a}}\right)\mid\psi\rangle\:\:\:;\:{U}\left(\boldsymbol{{a}}\right)\equiv{exp}\left(−{i}\boldsymbol{{a}}\bullet\boldsymbol{{p}}/\bar {{h}}\right)\:\boldsymbol{{translation}}\:\boldsymbol{{operator}} \\ $$$$\left(\mathrm{4}.\mathrm{4}\right)\:\:\:\psi_{\mu} \left(\boldsymbol{{x}}−\boldsymbol{{a}}\right)=\langle\boldsymbol{{x}},\mu\mid{U}\left(\boldsymbol{{a}}\right)\mid\psi\rangle=\langle\boldsymbol{{x}},\mu\mid\psi^{'} \rangle=\psi_{\mu} ^{'} \left(\boldsymbol{{x}}\right) \\ $$$$\left(\mathrm{4}.\mathrm{5}\right)\:\:\:{i}\bar {{h}}\frac{\partial\mid\psi\rangle}{\partial{a}_{{x}} }=−{i}\bar {{h}}\frac{\partial\mid\psi\rangle}{\partial{x}}={p}_{{x}} \mid\psi\rangle−− \\ $$$$\boldsymbol{{Passive}}\:\boldsymbol{{transformations}} \\ $$$$\left(\mathrm{1}\right)\:\:\:\psi_{\mu} \left(\boldsymbol{{x}};\boldsymbol{{a}}+\boldsymbol{{y}}\right)={exp}\left(\boldsymbol{{a}}\bullet\frac{\partial}{\partial\boldsymbol{{y}}}\right)\psi_{\mu} \left(\boldsymbol{{x}};\boldsymbol{{y}}\right) \\ $$$$\left(\mathrm{2}\right)\:\:\:\langle\boldsymbol{{x}},\mu;\mathrm{0}\mid{U}\left(−\boldsymbol{{a}}\right)\mid\psi\rangle=\psi_{\mu} \left(\boldsymbol{{x}}+\boldsymbol{{a}};\mathrm{0}\right)=\psi_{\mu} \left(\boldsymbol{{x}};\boldsymbol{{a}}\right) \\ $$$$\left(\mathrm{4}.\mathrm{6}\right)\:\:\:\mid\boldsymbol{{x}}_{\mathrm{0}} ,\mu\rangle=\int{d}^{\mathrm{3}} \boldsymbol{{p}}\mid\boldsymbol{{p}},\mu\rangle\langle\boldsymbol{{p}},\mu\mid\boldsymbol{{x}}_{\mathrm{0}} ,\mu\rangle=\frac{\mathrm{1}}{{h}^{\mathrm{3}/\mathrm{2}} }\int{d}^{\mathrm{3}} \boldsymbol{{p}}{e}^{−{i}\boldsymbol{{x}}_{\mathrm{0}} \bullet\boldsymbol{{p}}/\bar {\boldsymbol{{h}}}} \mid\boldsymbol{{p}},\mu\rangle \\ $$$$\left(\mathrm{4}.\mathrm{7}\right)\:\:\:{U}\left(\boldsymbol{{a}}\right)\mid\boldsymbol{{x}}_{\mathrm{0}} ,\mu\rangle=\frac{\mathrm{1}}{{h}^{\mathrm{3}/\mathrm{2}} }\int{d}^{\mathrm{3}} \boldsymbol{{p}}{e}^{−{i}\boldsymbol{{x}}_{\mathrm{0}} \bullet\boldsymbol{{p}}/\bar {\boldsymbol{{h}}}} {U}\left(\boldsymbol{{a}}\right)\mid\boldsymbol{{p}},\mu\rangle \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{1}}{{h}^{\mathrm{3}/\mathrm{2}} }\int{d}^{\mathrm{3}} \boldsymbol{{p}}{e}^{−{i}\left(\boldsymbol{{x}}_{\mathrm{0}} +\boldsymbol{\mathrm{a}}\right)\bullet\boldsymbol{{p}}/\bar {\boldsymbol{{h}}}} \mid\boldsymbol{{p}},\mu\rangle \\ $$$$\:\:\:\:\:\:=\mid\boldsymbol{{x}}_{\mathrm{0}} ,\boldsymbol{{a}}\rangle,\mu\rangle \\ $$$$\boldsymbol{{Operators}}\:\boldsymbol{{from}}\:\boldsymbol{{expectation}}\:\boldsymbol{{values}} \\ $$$$\left(\mathrm{1}\right)\:\:\:\langle\psi\mid{A}\mid\psi\rangle=\langle\psi\mid{B}\mid\psi\rangle \\ $$$$\left(\mathrm{2}\right)\:\:\:\lambda\left(\langle\emptyset\mid{A}\mid\chi\rangle−\langle\emptyset\mid{B}\mid\chi\rangle\right)=\lambda^{\ast} \left(\langle\chi\mid{B}\mid\emptyset\rangle−\langle\chi\mid{A}\mid\emptyset\rangle\right) \\ $$$$\left(\mathrm{4}.\mathrm{8}\right)\:\:\:\mathrm{1}=\langle\psi^{'} \mid\psi^{'} \rangle=\langle\psi\mid{U}^{+} {U}\mid\psi\rangle \\ $$$$\boldsymbol{{unitiry}}\:\boldsymbol{{operator}}\:{U}^{+} {U}={I}\:\:\:;\:{U}^{+} ={U}^{−\mathrm{1}} \\ $$$$\left(\mathrm{4}.\mathrm{9}\right)\:\:\:{U}\left(\delta\theta\right)={I}−{i}\delta\theta\tau+{O}\left(\delta\theta\right)^{\mathrm{2}} \\ $$$$\left(\mathrm{4}.\mathrm{10}\right)\:\:{I}={U}^{+} \left(\delta\theta\right){U}\left(\delta\theta\right)={I}+{i}\delta\theta\left(\left(\tau^{+} −\tau\right)+{O}\left(\delta\theta\right)^{\mathrm{2}} \right. \\ $$$$\left(\mathrm{4}.\mathrm{11}\right)\:\:{i}\frac{\partial\mid\psi^{'} \rangle}{\partial\theta}=\tau\mid\psi^{'} \rangle \\ $$$$\left(\mathrm{4}.\mathrm{12}\right)\:\:{U}\left(\theta\right)\equiv\underset{{N}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}−{i}\frac{\theta}{{N}}\tau\right)^{{N}} ={e}^{−{i}\theta\tau} \\ $$$$\:\:\:\:\:\:\tau\:\left({hermition}\right)\:=\:\boldsymbol{{generator}}\:\boldsymbol{{of}}\:{U}\:\&\:{the}\:\boldsymbol{\mathrm{transformation}} \\ $$$$\left(\mathrm{4}.\mathrm{13}\right)\:\:{U}\left(\boldsymbol{\alpha}\right)={exp}\left(−{i}\boldsymbol{\alpha}\bullet\boldsymbol{{J}}\right)\:\:\:;\:{J}_{{i}} :\boldsymbol{{angular}}-\boldsymbol{{momentum}}\:\boldsymbol{{operators}} \\ $$$$\left(\mathrm{4}.\mathrm{14}\right)\:\:{i}\frac{\partial\mid\psi\rangle}{\partial\alpha}=\hat {\boldsymbol{\alpha}}\bullet\boldsymbol{{J}}\mid\psi\rangle{q} \\ $$$$\left(\mathrm{4}.\mathrm{15}\right)\:\:\boldsymbol{{parity}}\:\boldsymbol{{transformation}} \\ $$$$\:\:\:\:\:\:\mathcal{P}\equiv\begin{pmatrix}{−\mathrm{1}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{−\mathrm{1}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{−\mathrm{1}}\end{pmatrix}\:\:\:\:;\:\mathcal{P}\boldsymbol{{x}}=−\boldsymbol{{x}} \\ $$$$\left(\mathrm{4}.\mathrm{16}\right)\:\:\boldsymbol{{quantum}}\:\boldsymbol{{parity}}\:\boldsymbol{{operator}}\:{P}: \\ $$$$\:\:\:\:\:\:{P}\:\psi_{\mu} ^{'} \left(\boldsymbol{{x}}\right)\equiv\langle\boldsymbol{{x}},\mu\mid{P}\mid\psi\rangle\equiv\psi_{\mu} \left(\mathcal{P}\boldsymbol{{x}}\right)=\psi_{\mu} \left(−\boldsymbol{{x}}\right)=\langle−\boldsymbol{{x}},\mu\mid\psi\rangle \\ $$$$\left(\mathrm{4}.\mathrm{17}\right)\:\:\psi_{\mu} ^{''} \left(\boldsymbol{{x}}\right)=\langle\boldsymbol{{x}},\mu\mid{P}\mid\psi^{'} \rangle=\langle−\boldsymbol{{x}},\mu\mid\psi^{'} \rangle \\ $$$$\:\:\:\:\:\:=\langle−\boldsymbol{{x}},\mu\mid{P}\mid\psi\rangle=\langle\boldsymbol{{x}},\mu\mid\psi\rangle=\psi_{\mu} \left(\boldsymbol{{x}}\right) \\ $$$$\:\left(\mathrm{4}.\mathrm{18}\right)\:\:\langle\emptyset\mid{P}\mid\psi\rangle^{\ast} =\int{d}^{\mathrm{3}} \boldsymbol{{x}}\underset{\mu} {\sum}\left(\langle\emptyset\downharpoonright\boldsymbol{{x}},\mu\rangle\langle\boldsymbol{{x}},\mu\downharpoonright{P}\downharpoonright\psi\rangle\right)^{\ast} \\ $$$$\:\:\:\:\:\:=\int{d}^{\mathrm{3}} \boldsymbol{{x}}\underset{\mu} {\sum}\left(\langle\emptyset\downharpoonright\boldsymbol{{x}},\mu\rangle\langle−\boldsymbol{{x}},\mu\downharpoonright\psi\rangle\right)^{\ast} \\ $$$$\:\:\:\:\:\:=\int{d}^{\mathrm{3}} \boldsymbol{{x}}\underset{\mu} {\sum}\left(\langle\psi\downharpoonright−\boldsymbol{{x}},\mu\rangle\langle\boldsymbol{{x}},\mu\downharpoonright{P}^{\mathrm{2}} \downharpoonright\emptyset\rangle\right) \\ $$$$\:\:\:\:\:\:=\int{d}^{\mathrm{3}} \boldsymbol{{x}}\underset{\mu} {\sum}\left(\langle\psi\downharpoonright−\boldsymbol{{x}},\mu\rangle\langle−\boldsymbol{{x}},\mu\downharpoonright{P}\downharpoonright\emptyset\rangle\right)=\langle\psi\mid{P}\mid\emptyset\rangle \\ $$$$\left(\mathrm{4}.\mathrm{19}\right)\:\:\boldsymbol{{Mirror}}\:\boldsymbol{{operators}} \\ $$$$\:\:\:\:\:\:\langle{x},{y}\mid{M}\mid\psi\rangle=\langle{y},{x}\mid\psi\rangle \\ $$$$\left(\mathrm{4}.\mathrm{20}\right)\:\:{U}^{+} \left(\boldsymbol{{a}}\right)\boldsymbol{{x}}{U}\left(\boldsymbol{{a}}\right)=\boldsymbol{{x}}+\boldsymbol{{a}} \\ $$$$\left(\mathrm{4}.\mathrm{21}\right)\:\:\boldsymbol{{x}}+\delta\boldsymbol{{a}}\backsimeq\left(\mathrm{1}+{i}\frac{\delta\boldsymbol{{a}}\bullet\boldsymbol{{p}}}{\bar {{h}}}\right)\boldsymbol{{x}}\left(\mathrm{1}−{i}\frac{\delta\boldsymbol{{a}}\bullet\boldsymbol{{p}}}{\bar {{h}}}\right) \\ $$$$\:\:\:\:\:\:=\boldsymbol{{x}}−\frac{{i}}{\bar {{h}}}\left[\boldsymbol{{x}},\delta\boldsymbol{{a}}\bullet\boldsymbol{{p}}\right]+{O}\left(\delta\boldsymbol{{a}}\right)^{\mathrm{2}} \\ $$$$\left(\mathrm{4}.\mathrm{22}\right)\:\:\left[{x}_{{i}} ,{p}_{{j}} \right]={i}\bar {{h}}\delta_{{ij}} \\ $$$$\left(\mathrm{4}.\mathrm{23}\right)\:\:{U}^{+} \left(\boldsymbol{{a}}\right)\boldsymbol{{x}}{U}\left(\boldsymbol{{a}}\right)={U}^{+} \left(\boldsymbol{{a}}\right){U}\left(\boldsymbol{{a}}\right)\boldsymbol{{x}}+{U}^{+} \left(\boldsymbol{{a}}\right)\left[\boldsymbol{{x}},{U}\left(\boldsymbol{{a}}\right)\right]=\boldsymbol{{x}}+{U}^{+} \left(\boldsymbol{{a}}\right)\left[\boldsymbol{{x}},{U}\left(\boldsymbol{{a}}\right)\right] \\ $$$$\left(\mathrm{4}.\mathrm{24}\right)\:\:{U}^{+} \left(\boldsymbol{{a}}\right)\boldsymbol{{x}}{U}\left(\boldsymbol{{a}}\right)=\boldsymbol{{x}}−\frac{{i}}{\bar {{h}}}{U}^{+} \left(\boldsymbol{{a}}\right)\left[\boldsymbol{{x}},\boldsymbol{{a}}\bullet\boldsymbol{{p}}\right]{U}\left(\boldsymbol{{a}}\right)=\boldsymbol{{x}}+\boldsymbol{{a}} \\ $$$$\boldsymbol{{Rotations}}\:\boldsymbol{{in}}\:\boldsymbol{{ordinary}}\:\boldsymbol{{space}} \\ $$$$\:\:\:\:\:\:\boldsymbol{{R}}^{{T}} =\boldsymbol{{R}}^{−\mathrm{1}} \:\:\:;\:{det}\left(\boldsymbol{{R}}\right)=+\mathrm{1}\:\:\:;\:\boldsymbol{{R}}\left(\boldsymbol{\alpha}\right)\hat {\boldsymbol{\alpha}}=\hat {\boldsymbol{\alpha}} \\ $$$$\:\:\:\:\:\:{Tr}\boldsymbol{{R}}\left(\boldsymbol{\alpha}\right)=\mathrm{1}+\mathrm{2}{cos}\mid\boldsymbol{\alpha}\mid\:\:\:;\:\boldsymbol{{v}}^{'} =\boldsymbol{{v}}+\boldsymbol{\alpha}×\boldsymbol{{v}} \\ $$$$\left(\mathrm{4}.\mathrm{25}\right)\:\:\boldsymbol{{R}}\left(\boldsymbol{\alpha}\right)\langle\psi\mid\boldsymbol{{x}}\mid\psi\rangle=\langle\psi^{'} \mid\boldsymbol{{x}}\mid\psi^{'} \rangle=\langle\psi\mid{U}^{+} \left(\boldsymbol{\alpha}\right)\boldsymbol{{x}}{U}\left(\boldsymbol{\alpha}\right)\mid\psi\rangle \\ $$$$\left(\mathrm{4}.\mathrm{26}\right)\:\:\boldsymbol{{R}}\left(\boldsymbol{\alpha}\right)\boldsymbol{{x}}={U}^{+} \left(\boldsymbol{\alpha}\right)\boldsymbol{{x}}{U}\left(\boldsymbol{\alpha}\right) \\ $$$$\left(\mathrm{4}.\mathrm{27}\right)\:\:\boldsymbol{{x}}+\delta\boldsymbol{\alpha}×\boldsymbol{{x}}\backsimeq\left(\mathrm{1}+{i}\delta\boldsymbol{\alpha}\bullet\boldsymbol{{J}}\right)\boldsymbol{{x}}\left(\mathrm{1}−{i}\delta\boldsymbol{\alpha}\bullet\boldsymbol{{J}}\right) \\ $$$$\:\:\:\:\:\:=\boldsymbol{{x}}+{i}\left[\delta\boldsymbol{\alpha}\bullet\boldsymbol{{J}},\boldsymbol{{x}}\right]+{O}\left(\delta\boldsymbol{\alpha}\right)^{\mathrm{2}} \\ $$$$\left(\mathrm{4}.\mathrm{28}\right)\:\:\left(\delta\boldsymbol{\alpha}×\boldsymbol{{x}}\right)_{{i}} =\underset{{ij}} {\sum}\epsilon_{{ijk}} \delta\alpha_{{j}} {x}_{{k}} \\ $$$$\left(\mathrm{4}.\mathrm{29}\right)\:\:\underset{{ij}} {\sum}\epsilon_{{ijk}} \delta\alpha_{{j}} {x}_{{k}} ={i}\underset{{j}} {\sum}\delta\alpha_{{j}} \left[{J}_{{j}} ,{x}_{{i}} \right] \\ $$$$\left(\mathrm{4}.\mathrm{30}\right)\:\:\left[{J}_{{i}} ,{x}_{{j}} \right]={i}\underset{{k}} {\sum}\epsilon_{{ijk}} {x}_{{k}} \\ $$$$\left(\mathrm{4}.\mathrm{31}\right)\:\:\left[{J}_{{i}} ,{v}_{{j}} \right]={i}\underset{{k}} {\sum}\epsilon_{{ijk}} {v}_{{k}} \\ $$$$\left(\mathrm{4}.\mathrm{32}\right)\:\:\left[{J}_{{i}} ,{p}_{{j}} \right]={i}\underset{{k}} {\sum}\epsilon_{{ijk}} {p}_{{k}} \\ $$$$\left(\mathrm{4}.\mathrm{33}\right)\:\:\left[{J}_{{i}} ,{J}_{{j}} \right]={i}\underset{{k}} {\sum}\epsilon_{{ijk}} {J}_{{k}} \\ $$$$\left(\mathrm{4}.\mathrm{34}\right)\:\:\langle\psi^{'} \mid{S}\mid\psi^{'} \rangle=\langle\psi\mid{U}^{+} \left(\boldsymbol{\alpha}\right){SU}\left(\boldsymbol{\alpha}\right)\mid\psi\rangle=\langle\psi\mid{S}\mid\psi\rangle \\ $$$$\left(\mathrm{4}.\mathrm{35}\right)\:\:{S}\backsimeq\left(\mathrm{1}+{i}\delta\boldsymbol{\alpha}\bullet\boldsymbol{{J}}\right){S}\left(\mathrm{1}−{i}\delta\boldsymbol{\alpha}\bullet\boldsymbol{{J}}\right) \\ $$$$\:\:\:\:\:\:={S}+{i}\delta\boldsymbol{\alpha}\bullet\left[\boldsymbol{{J}},{S}\right]+{O}\left(\delta\boldsymbol{\alpha}\right)^{\mathrm{2}} \\ $$$$\left(\mathrm{4}.\mathrm{36}\right)\:\:\left[\boldsymbol{{J}},{S}\right]=\mathrm{0} \\ $$$$\left(\mathrm{4}.\mathrm{37}\right)\:\:\left[\boldsymbol{{J}},{J}^{\mathrm{2}} \right]=\mathrm{0} \\ $$$$\left(\mathrm{4}.\mathrm{38}\right)\:\:\boldsymbol{{The}}\:\boldsymbol{{parity}}\:\boldsymbol{{operator}}:\:\boldsymbol{{x}}\rightarrow\mathcal{P}\boldsymbol{{x}}=−\boldsymbol{{x}} \\ $$$$\:\:\:\:\:\:−\langle\psi\mid\boldsymbol{{x}}\mid\psi\rangle=\mathcal{P}\langle\psi\mid\boldsymbol{{x}}\mid\psi\rangle=\langle\psi^{'} \mid\boldsymbol{{x}}\mid\psi^{'} \rangle=\langle\psi\mid{P}^{+} \boldsymbol{{x}}{P}\mid\psi\rangle \\ $$$$\left(\mathrm{4}.\mathrm{39}\right)\:\:\left\{\boldsymbol{{x}},{P}\right\}\equiv\boldsymbol{{x}}{P}+{P}\boldsymbol{{x}}=\mathrm{0} \\ $$$$\left(\mathrm{4}.\mathrm{40}\right)\:\:\left\{\boldsymbol{{v}},{P}\right\}\equiv\boldsymbol{{v}}{P}+{P}\boldsymbol{{v}}=\mathrm{0} \\ $$$$\left(\mathrm{4}.\mathrm{41}\right)\:\:\boldsymbol{{v}}\downharpoonright\boldsymbol{\omega}^{'} \rangle=\boldsymbol{{v}}\left({P}\downharpoonright\boldsymbol{\omega}\rangle\right)=−{P}\boldsymbol{{v}}\downharpoonright\boldsymbol{\omega}\rangle=−\boldsymbol{\omega}{P}\downharpoonright\boldsymbol{\omega}\rangle=−\boldsymbol{\omega}\downharpoonright\boldsymbol{\omega}^{'} \rangle \\ $$$$\left(\mathrm{4}.\mathrm{42}\right)\:\:−\langle\pm\mid\boldsymbol{{v}}\mid\pm\rangle=\mathcal{P}\langle\pm\mid\boldsymbol{{v}}\mid\pm\rangle=\langle\pm\mid{P}^{+} \boldsymbol{{v}}{P}\mid\pm\rangle=\left(\pm\right)^{\mathrm{2}} \langle\pm\mid\boldsymbol{{v}}\mid\pm\rangle \\ $$$$\left(\mathrm{4}.\mathrm{43}{a}\right)\:\langle\boldsymbol{{x}}\mid{PV}\mid\psi\rangle=\langle−\boldsymbol{{x}}\mid{V}\mid\psi\rangle={V}\left(−\boldsymbol{{x}}\right)\langle−\boldsymbol{{x}}\mid\psi\rangle={V}\left(\boldsymbol{{x}}\right)\langle−\boldsymbol{{x}}\mid\psi\rangle \\ $$$$\left(\mathrm{4}.\mathrm{43}{b}\right)\:\langle\boldsymbol{{x}}\mid{VP}\mid\psi\rangle={V}\left(\boldsymbol{{x}}\right)\langle\boldsymbol{{x}}\mid{P}\mid\psi\rangle={V}\left(\boldsymbol{{x}}\right)\langle−\boldsymbol{{x}}\mid\psi\rangle \\ $$$$\left(\mathrm{4}.\mathrm{44}\right)\:\:{p}^{\mathrm{2}} {P}=\underset{{k}} {\sum}{p}_{{k}} {p}_{{k}} {P}=−\underset{{k}} {\sum}{p}_{{k}} {Pp}_{{k}} =\underset{{k}} {\sum}{Pp}_{{k}} {p}_{{k}} ={Pp}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\Rightarrow\left[{p}^{\mathrm{2}} ,{P}\right]=\mathrm{0} \\ $$$$\left(\mathrm{4}.\mathrm{45}\right)\:\:\left\{{P},\left[{v}_{{i}} ,{J}_{{j}} \right]\right\}={i}\underset{{k}} {\sum}\epsilon_{{ijk}} \left\{{P},{v}_{{k}} \right\}=\mathrm{0} \\ $$$$\left(\mathrm{4}.\mathrm{46}\right)\:\:\mathrm{0}=\left\{{P},\left[{v}_{{i}} ,{J}_{{j}} \right]\right\}=\left[\left\{{P},{v}_{{i}} \right\},{J}_{{j}} \right]−\left\{\left[{P},{J}_{{j}} \right],{v}_{{i}} \right\}=−\left\{\left[{P},{J}_{{j}} \right],{v}_{{i}} \right\} \\ $$$$\left(\mathrm{4}.\mathrm{47}\right)\:\:\left[{P},{J}_{{j}} \right]=\lambda{P} \\ $$$$\left(\mathrm{4}.\mathrm{48}\right)\:\:\langle\psi^{'} \mid\boldsymbol{{J}}\mid\psi^{'} \rangle=\langle\psi\mid{P}^{+} \boldsymbol{{J}}{P}\mid\psi\rangle=\langle\psi\mid\boldsymbol{{J}}\mid\psi\rangle \\ $$$$\left(\mathrm{4}.\mathrm{48}\right)\:\:\langle\psi\mid{M}^{+} {xM}\mid\psi\rangle=\langle\psi\mid{y}\mid\psi\rangle\:\:\:\boldsymbol{{Mirror}}\:\boldsymbol{{operators}} \\ $$$$\left(\mathrm{4}.\mathrm{50}\right)\:\:{M}^{+} {xM}={y}\:\Rightarrow\:{xM}={My} \\ $$$$\left(\mathrm{4}.\mathrm{51}\right)\:\:\mid\psi,{t}\rangle={e}^{−{iHt}/\bar {{h}}} \mid\psi,\mathrm{0}\rangle \\ $$$$\left(\mathrm{4}.\mathrm{52}\right)\:\:{U}\left({t}\right)={e}^{−{iHt}/\bar {{h}}} \:\:\:\boldsymbol{{time}}-\boldsymbol{{evolution}}\:\boldsymbol{{operator}} \\ $$$$\left(\mathrm{4}.\mathrm{53}\right)\:\:{U}\left(\theta\right){U}\left({t}\right)\mid\psi\rangle={U}\left({t}\right){U}\left(\theta\right)\mid\psi\rangle \\ $$$$\left(\mathrm{4}.\mathrm{54}{a}\right)\:\langle\boldsymbol{{x}}\mid{VU}\left(\boldsymbol{\alpha}\right)\mid\psi\rangle={V}\left(\boldsymbol{{x}}\right)\langle\boldsymbol{{x}}\mid{U}\left(\boldsymbol{\alpha}\right)\mid\psi\rangle={V}\left(\boldsymbol{{x}}\right)\langle\boldsymbol{{R}}\left(\boldsymbol{\alpha}\right)\boldsymbol{{x}}\mid\psi\rangle \\ $$$$\left(\mathrm{4}.\mathrm{54}{b}\right)\:\langle\boldsymbol{{x}}\mid{U}\left(\boldsymbol{\alpha}\right){V}\mid\psi\rangle=\langle\boldsymbol{{R}}\left(\boldsymbol{\alpha}\right)\boldsymbol{{x}}\mid{V}\mid\psi\rangle={V}\left(\boldsymbol{{R}}\left(\boldsymbol{\alpha}\right)\boldsymbol{{x}}\right)\langle\boldsymbol{{R}}\left(\boldsymbol{\alpha}\right)\boldsymbol{{x}}\mid\psi\rangle \\ $$$$\left(\mathrm{4}.\mathrm{55}\right)\:\:{H}=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\boldsymbol{{p}}_{{i}} ^{\mathrm{2}} }{\mathrm{2}{m}_{{i}} }+\underset{{i}<{j}} {\sum}{V}\left(\boldsymbol{{x}}_{{i}} −\boldsymbol{{x}}_{{j}} \right) \\ $$$$\left(\mathrm{4}.\mathrm{56}\right)\:\:\mid\psi,{t}\rangle={U}\left({t}\right)\mid\psi,\mathrm{0}\rangle \\ $$$$\left(\mathrm{4}.\mathrm{57}\right)\:\:\overset{\sim} {{Q}}_{{t}} \equiv{U}^{+} \left({t}\right){QU}\left({t}\right) \\ $$$$\left(\mathrm{4}.\mathrm{58}\right)\:\:\langle{Q}\rangle_{{t}} =\langle\psi,{t}\mid{Q}\mid\psi,{t}\rangle=\langle\psi,\mathrm{0}\mid{U}^{+} \left({t}\right){QU}\left({t}\right)\mid\psi,\mathrm{0}\rangle=\langle\psi,\mathrm{0}\mid\overset{\sim} {{Q}}_{{t}} \mid\psi,\mathrm{0}\rangle \\ $$$$\left(\mathrm{4}.\mathrm{59}\right)\:\:\langle\emptyset,{t}\downharpoonright\psi,{t}\rangle=\langle\emptyset,\mathrm{0}\downharpoonright\psi,\mathrm{0}\rangle\:\:\:;\:\mid\emptyset,{t}\rangle\equiv{U}\left({t}\right)\mid\emptyset,\mathrm{0}\rangle \\ $$$$\left(\mathrm{4}.\mathrm{60}\right)\:\:\frac{{d}\overset{\sim} {{Q}}_{{t}} }{{dt}}=\frac{{dU}^{+} }{{dt}}{QU}+{U}^{+} {Q}\frac{{dU}}{{dt}} \\ $$$$\left(\mathrm{4}.\mathrm{61}\right)\:\:\frac{{dU}}{{dt}}=−\frac{{iH}}{\bar {{h}}}{U}\Rightarrow\frac{{dU}^{+} }{{dt}}=\frac{{iH}}{\bar {{h}}}{U}^{+} \\ $$$$\left(\mathrm{4}.\mathrm{62}\right)\:\:{i}\bar {{h}}\frac{{d}\overset{\backsim} {{Q}}_{{t}} }{{dt}}=−{HU}^{+} {QU}+{U}^{+} {QUH}=\left[\overset{\backsim} {{Q}}_{{t}} ,{H}\right] \\ $$$$\left(\mathrm{4}.\mathrm{63}\right)\:\:{exp}\left(−{i}\boldsymbol{\alpha}\bullet\boldsymbol{\mathcal{J}}\right)\equiv\boldsymbol{{R}}\left(\boldsymbol{\alpha}\right) \\ $$$$\left(\mathrm{4}.\mathrm{64}\right)\:\:\boldsymbol{{I}}=\boldsymbol{{R}}^{{T}} \left(\boldsymbol{\alpha}\right)\boldsymbol{{R}}\left(\boldsymbol{\alpha}\right)={exp}\left(−{i}\boldsymbol{\alpha}\bullet\boldsymbol{\mathcal{J}}\right)^{{T}} {exp}\left(−{i}\boldsymbol{\alpha}\bullet\boldsymbol{\mathcal{J}}\right) \\ $$$$\:\:\:\:\:\:={exp}\left(−{i}\boldsymbol{\alpha}\bullet\boldsymbol{\mathcal{J}}^{{T}} \right){exp}\left(−{i}\boldsymbol{\alpha}\bullet\boldsymbol{\mathcal{J}}\right) \\ $$$$\left(\mathrm{4}.\mathrm{65}\right)\:\:\mathrm{0}=−{i}\boldsymbol{{n}}\bullet\boldsymbol{\mathcal{J}}^{{T}} {exp}\left(−{i}\theta\boldsymbol{{n}}\bullet\boldsymbol{\mathcal{J}}^{{T}} \right){exp}\left(−{i}\theta\boldsymbol{{n}}\bullet\boldsymbol{\mathcal{J}}\right) \\ $$$$\:\:\:\:\:\:+{exp}\left(−{i}\theta\boldsymbol{{n}}\bullet\boldsymbol{\mathcal{J}}^{{T}} \right){exp}\left(−{i}\theta\boldsymbol{{n}}\bullet\boldsymbol{\mathcal{J}}\right)\left(−{i}\boldsymbol{{n}}\bullet\boldsymbol{\mathcal{J}}\right) \\ $$$$\:\:\:\:\:\:−{i}\boldsymbol{{n}}\bullet\left\{\boldsymbol{\mathcal{J}}^{{T}} +\boldsymbol{\mathcal{J}}\right\} \\ $$$$\left(\mathrm{4}.\mathrm{66}\right)\:\:\left\{\boldsymbol{{R}}^{{T}} \left(\boldsymbol{\alpha}\right)\boldsymbol{{R}}\left(\boldsymbol{\beta}\right)\boldsymbol{{R}}\left(\boldsymbol{\alpha}\right)\right\}\boldsymbol{\beta}^{'} =\boldsymbol{{R}}^{{T}} \left(\boldsymbol{\alpha}\right)\boldsymbol{{R}}\left(\boldsymbol{\beta}\right)\boldsymbol{\beta}=\boldsymbol{{R}}^{{T}} \left(\boldsymbol{\alpha}\right)\boldsymbol{\beta}^{'} \\ $$$$\left(\mathrm{4}.\mathrm{67}\right)\:\:\boldsymbol{{R}}^{{T}} \left(\boldsymbol{\alpha}\right)\boldsymbol{{R}}\left(\boldsymbol{\beta}\right)\boldsymbol{{R}}\left(\boldsymbol{\alpha}\right)=\boldsymbol{{R}}\left(\boldsymbol{\beta}^{'} \right)=\boldsymbol{{R}}\left(\boldsymbol{{R}}\left(−\boldsymbol{\alpha}\right)\boldsymbol{\beta}\right) \\ $$$$\left(\mathrm{4}.\mathrm{68}\right)\:\:\left(\mathrm{1}+{i}\boldsymbol{\alpha}\bullet\boldsymbol{\mathcal{J}}\right)\left(\mathrm{1}+{i}\boldsymbol{\beta}\bullet\boldsymbol{\mathcal{J}}\right)\left(\mathrm{1}−{i}\boldsymbol{\alpha}\bullet\boldsymbol{\mathcal{J}}\right)\backsimeq\mathrm{1}−{i}\left(\boldsymbol{\beta}−\boldsymbol{\alpha}×\boldsymbol{\beta}\right)\bullet\boldsymbol{\mathcal{J}} \\ $$$$\left(\mathrm{4}.\mathrm{69}\right)\:\:\alpha_{{i}} \beta_{{j}} \left[\mathcal{J}_{{i}} ,\mathcal{J}_{{j}} \right]={i}\alpha_{{i}} \beta_{{j}} \underset{{k}} {\sum}\epsilon_{{ijk}} \mathcal{J}_{{k}} \\ $$$$\left(\mathrm{4}.\mathrm{70}\right)\:\:\left[\mathcal{J}_{{i}} ,\mathcal{J}_{{j}} \right]={i}\underset{{k}} {\sum}\epsilon_{{ijk}} \mathcal{J}_{{k}} \\ $$$$\left(\mathrm{4}.\mathrm{71}\right)\:\:{Prob}\left({at}\:\boldsymbol{{x}}\downharpoonright\psi\right)=\underset{\mu} {\sum}\mid\langle\boldsymbol{{x}},\mu\downharpoonright\psi\rangle\mid^{\mathrm{2}} \\ $$$$\left(\mathrm{4}.\mathrm{72}\right)\:\:\boldsymbol{{R}}\left(\emptyset\right)=\begin{pmatrix}{\mathrm{cos}\:\emptyset}&{−\mathrm{sin}\:\emptyset}&{\mathrm{0}}\\{\mathrm{sin}\:\emptyset}&{\mathrm{cos}\:\emptyset}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}\end{pmatrix} \\ $$$$\left(\mathrm{4}.\mathrm{73}\right)\:\:\boldsymbol{\mathcal{J}}_{{z}} ^{'} =\equiv\boldsymbol{{M}}\bullet\boldsymbol{\mathcal{J}}_{{z}} \bullet\boldsymbol{{M}}^{+} \\ $$$$\left(\mathrm{4}.\mathrm{74}\right)\:\:{S}_{{x}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\begin{pmatrix}{\mathrm{0}}&{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{1}}&{\mathrm{0}}&{\mathrm{1}}\\{\mathrm{0}}&{\mathrm{1}}&{\mathrm{0}}\end{pmatrix}\:\:;\:{S}_{{y}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\begin{pmatrix}{\mathrm{0}}&{−{i}}&{\mathrm{0}}\\{{i}}&{\mathrm{0}}&{−{i}}\\{\mathrm{0}}&{{i}}&{\mathrm{0}}\end{pmatrix}\:\:;\:{S}_{{z}} =\begin{pmatrix}{\mathrm{1}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{−\mathrm{1}}\end{pmatrix}\: \\ $$$$\left(\mathrm{4}.\mathrm{75}\right)\:\:\langle\boldsymbol{{x}}\mid\boldsymbol{{p}}\rangle={e}^{{i}\boldsymbol{{p}}\bullet\boldsymbol{{x}}/\bar {{h}}} \\ $$$$\left(\mathrm{4}.\mathrm{76}\right)\:\:\left[\left\{{A},{B}\right\},{C}\right]=\left\{{A},\left[{B},{C}\right]\right\}+\left\{\left[{A},{C}\right],{B}\right\} \\ $$$$\left(\mathrm{4}.\mathrm{77}\right)\:\:{G}\equiv\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−{P}\right) \\ $$$$\left(\mathrm{4}.\mathrm{78}\right)\:\:{S}\langle\psi\mid\boldsymbol{{x}}\mid\psi\rangle=\langle\psi\mid{S}^{+} \boldsymbol{{x}}{S}\mid\psi\rangle \\ $$$$\left(\mathrm{4}.\mathrm{79}\right)\:\:{S}_{{ij}} =\delta_{{ij}} −\mathrm{2}{n}_{{i}} {n}_{{j}} \\ $$$$\left(\mathrm{4}.\mathrm{80}\right)\:\:{V}\left(\boldsymbol{{x}}\right)={f}\left({R}\right)+\lambda{xy}\:\:\:;\:{R}=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$$$ \\ $$
Commented by Dwaipayan Shikari last updated on 18/Oct/20
Kindly don′t mark it as inappropiate. There are many   derivations in physics.
$${Kindly}\:{don}'{t}\:{mark}\:{it}\:{as}\:{inappropiate}.\:{There}\:{are}\:{many}\: \\ $$$${derivations}\:{in}\:{physics}. \\ $$
Commented by Dwaipayan Shikari last updated on 18/Oct/20
A Theoretical  physicist
$${A}\:{Theoretical}\:\:{physicist}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *