Menu Close

4-1-x-x-4-2-x-a-1-a-x-1-2-a-x-2-x-exp-a-x-x-x-exp-i-a-p-h-4-3-U-a-U-a-exp-ia-p-h-translat




Question Number 118633 by wsyip last updated on 18/Oct/20
  (4.1)   ψ_μ (x)≡⟨x,μ∣ψ⟩  (4.2)   ψ_μ (x−a)=[1−a•(∂/∂x)+(1/(2!))(a•(∂/∂x))^2 −…]ψ_μ (x)        =exp(−a•(∂/∂x))ψ_μ (x)=⟨x,μ∣exp(−i((a•p)/h^� ))∣ψ⟩  (4.3)   ∣ψ^′ ⟩≡U(a)∣ψ⟩   ; U(a)≡exp(−ia•p/h^� ) translation operator  (4.4)   ψ_μ (x−a)=⟨x,μ∣U(a)∣ψ⟩=⟨x,μ∣ψ^′ ⟩=ψ_μ ^′ (x)  (4.5)   ih^� ((∂∣ψ⟩)/∂a_x )=−ih^� ((∂∣ψ⟩)/∂x)=p_x ∣ψ⟩−−  Passive transformations  (1)   ψ_μ (x;a+y)=exp(a•(∂/∂y))ψ_μ (x;y)  (2)   ⟨x,μ;0∣U(−a)∣ψ⟩=ψ_μ (x+a;0)=ψ_μ (x;a)  (4.6)   ∣x_0 ,μ⟩=∫d^3 p∣p,μ⟩⟨p,μ∣x_0 ,μ⟩=(1/h^(3/2) )∫d^3 pe^(−ix_0 •p/h^� ) ∣p,μ⟩  (4.7)   U(a)∣x_0 ,μ⟩=(1/h^(3/2) )∫d^3 pe^(−ix_0 •p/h^� ) U(a)∣p,μ⟩        =(1/h^(3/2) )∫d^3 pe^(−i(x_0 +a)•p/h^� ) ∣p,μ⟩        =∣x_0 ,a⟩,μ⟩  Operators from expectation values  (1)   ⟨ψ∣A∣ψ⟩=⟨ψ∣B∣ψ⟩  (2)   λ(⟨∅∣A∣χ⟩−⟨∅∣B∣χ⟩)=λ^∗ (⟨χ∣B∣∅⟩−⟨χ∣A∣∅⟩)  (4.8)   1=⟨ψ^′ ∣ψ^′ ⟩=⟨ψ∣U^+ U∣ψ⟩  unitiry operator U^+ U=I   ; U^+ =U^(−1)   (4.9)   U(δθ)=I−iδθτ+O(δθ)^2   (4.10)  I=U^+ (δθ)U(δθ)=I+iδθ((τ^+ −τ)+O(δθ)^2   (4.11)  i((∂∣ψ^′ ⟩)/∂θ)=τ∣ψ^′ ⟩  (4.12)  U(θ)≡lim_(N→∞) (1−i(θ/N)τ)^N =e^(−iθτ)         τ (hermition) = generator of U & the transformation  (4.13)  U(𝛂)=exp(−i𝛂•J)   ; J_i :angular-momentum operators  (4.14)  i((∂∣ψ⟩)/∂α)=𝛂^� •J∣ψ⟩q  (4.15)  parity transformation        P≡ (((−1),0,0),(0,(−1),0),(0,0,(−1)) )    ; Px=−x  (4.16)  quantum parity operator P:        P ψ_μ ^′ (x)≡⟨x,μ∣P∣ψ⟩≡ψ_μ (Px)=ψ_μ (−x)=⟨−x,μ∣ψ⟩  (4.17)  ψ_μ ^(′′) (x)=⟨x,μ∣P∣ψ^′ ⟩=⟨−x,μ∣ψ^′ ⟩        =⟨−x,μ∣P∣ψ⟩=⟨x,μ∣ψ⟩=ψ_μ (x)   (4.18)  ⟨∅∣P∣ψ⟩^∗ =∫d^3 xΣ_μ (⟨∅⇂x,μ⟩⟨x,μ⇂P⇂ψ⟩)^∗         =∫d^3 xΣ_μ (⟨∅⇂x,μ⟩⟨−x,μ⇂ψ⟩)^∗         =∫d^3 xΣ_μ (⟨ψ⇂−x,μ⟩⟨x,μ⇂P^2 ⇂∅⟩)        =∫d^3 xΣ_μ (⟨ψ⇂−x,μ⟩⟨−x,μ⇂P⇂∅⟩)=⟨ψ∣P∣∅⟩  (4.19)  Mirror operators        ⟨x,y∣M∣ψ⟩=⟨y,x∣ψ⟩  (4.20)  U^+ (a)xU(a)=x+a  (4.21)  x+δa⋍(1+i((δa•p)/h^� ))x(1−i((δa•p)/h^� ))        =x−(i/h^� )[x,δa•p]+O(δa)^2   (4.22)  [x_i ,p_j ]=ih^� δ_(ij)   (4.23)  U^+ (a)xU(a)=U^+ (a)U(a)x+U^+ (a)[x,U(a)]=x+U^+ (a)[x,U(a)]  (4.24)  U^+ (a)xU(a)=x−(i/h^� )U^+ (a)[x,a•p]U(a)=x+a  Rotations in ordinary space        R^T =R^(−1)    ; det(R)=+1   ; R(𝛂)𝛂^� =𝛂^�         TrR(𝛂)=1+2cos∣𝛂∣   ; v^′ =v+𝛂×v  (4.25)  R(𝛂)⟨ψ∣x∣ψ⟩=⟨ψ^′ ∣x∣ψ^′ ⟩=⟨ψ∣U^+ (𝛂)xU(𝛂)∣ψ⟩  (4.26)  R(𝛂)x=U^+ (𝛂)xU(𝛂)  (4.27)  x+δ𝛂×x⋍(1+iδ𝛂•J)x(1−iδ𝛂•J)        =x+i[δ𝛂•J,x]+O(δ𝛂)^2   (4.28)  (δ𝛂×x)_i =Σ_(ij) ε_(ijk) δα_j x_k   (4.29)  Σ_(ij) ε_(ijk) δα_j x_k =iΣ_j δα_j [J_j ,x_i ]  (4.30)  [J_i ,x_j ]=iΣ_k ε_(ijk) x_k   (4.31)  [J_i ,v_j ]=iΣ_k ε_(ijk) v_k   (4.32)  [J_i ,p_j ]=iΣ_k ε_(ijk) p_k   (4.33)  [J_i ,J_j ]=iΣ_k ε_(ijk) J_k   (4.34)  ⟨ψ^′ ∣S∣ψ^′ ⟩=⟨ψ∣U^+ (𝛂)SU(𝛂)∣ψ⟩=⟨ψ∣S∣ψ⟩  (4.35)  S⋍(1+iδ𝛂•J)S(1−iδ𝛂•J)        =S+iδ𝛂•[J,S]+O(δ𝛂)^2   (4.36)  [J,S]=0  (4.37)  [J,J^2 ]=0  (4.38)  The parity operator: x→Px=−x        −⟨ψ∣x∣ψ⟩=P⟨ψ∣x∣ψ⟩=⟨ψ^′ ∣x∣ψ^′ ⟩=⟨ψ∣P^+ xP∣ψ⟩  (4.39)  {x,P}≡xP+Px=0  (4.40)  {v,P}≡vP+Pv=0  (4.41)  v⇂𝛚^′ ⟩=v(P⇂𝛚⟩)=−Pv⇂𝛚⟩=−𝛚P⇂𝛚⟩=−𝛚⇂𝛚^′ ⟩  (4.42)  −⟨±∣v∣±⟩=P⟨±∣v∣±⟩=⟨±∣P^+ vP∣±⟩=(±)^2 ⟨±∣v∣±⟩  (4.43a) ⟨x∣PV∣ψ⟩=⟨−x∣V∣ψ⟩=V(−x)⟨−x∣ψ⟩=V(x)⟨−x∣ψ⟩  (4.43b) ⟨x∣VP∣ψ⟩=V(x)⟨x∣P∣ψ⟩=V(x)⟨−x∣ψ⟩  (4.44)  p^2 P=Σ_k p_k p_k P=−Σ_k p_k Pp_k =Σ_k Pp_k p_k =Pp^2         ⇒[p^2 ,P]=0  (4.45)  {P,[v_i ,J_j ]}=iΣ_k ε_(ijk) {P,v_k }=0  (4.46)  0={P,[v_i ,J_j ]}=[{P,v_i },J_j ]−{[P,J_j ],v_i }=−{[P,J_j ],v_i }  (4.47)  [P,J_j ]=λP  (4.48)  ⟨ψ^′ ∣J∣ψ^′ ⟩=⟨ψ∣P^+ JP∣ψ⟩=⟨ψ∣J∣ψ⟩  (4.48)  ⟨ψ∣M^+ xM∣ψ⟩=⟨ψ∣y∣ψ⟩   Mirror operators  (4.50)  M^+ xM=y ⇒ xM=My  (4.51)  ∣ψ,t⟩=e^(−iHt/h^� ) ∣ψ,0⟩  (4.52)  U(t)=e^(−iHt/h^� )    time-evolution operator  (4.53)  U(θ)U(t)∣ψ⟩=U(t)U(θ)∣ψ⟩  (4.54a) ⟨x∣VU(𝛂)∣ψ⟩=V(x)⟨x∣U(𝛂)∣ψ⟩=V(x)⟨R(𝛂)x∣ψ⟩  (4.54b) ⟨x∣U(𝛂)V∣ψ⟩=⟨R(𝛂)x∣V∣ψ⟩=V(R(𝛂)x)⟨R(𝛂)x∣ψ⟩  (4.55)  H=Σ_(i=1) ^n (p_i ^2 /(2m_i ))+Σ_(i<j) V(x_i −x_j )  (4.56)  ∣ψ,t⟩=U(t)∣ψ,0⟩  (4.57)  Q_t ^∼ ≡U^+ (t)QU(t)  (4.58)  ⟨Q⟩_t =⟨ψ,t∣Q∣ψ,t⟩=⟨ψ,0∣U^+ (t)QU(t)∣ψ,0⟩=⟨ψ,0∣Q_t ^∼ ∣ψ,0⟩  (4.59)  ⟨∅,t⇂ψ,t⟩=⟨∅,0⇂ψ,0⟩   ; ∣∅,t⟩≡U(t)∣∅,0⟩  (4.60)  (dQ_t ^∼ /dt)=(dU^+ /dt)QU+U^+ Q(dU/dt)  (4.61)  (dU/dt)=−((iH)/h^� )U⇒(dU^+ /dt)=((iH)/h^� )U^+   (4.62)  ih^� (dQ_t ^∽ /dt)=−HU^+ QU+U^+ QUH=[Q_t ^∽ ,H]  (4.63)  exp(−i𝛂•J)≡R(𝛂)  (4.64)  I=R^T (𝛂)R(𝛂)=exp(−i𝛂•J)^T exp(−i𝛂•J)        =exp(−i𝛂•J^T )exp(−i𝛂•J)  (4.65)  0=−in•J^T exp(−iθn•J^T )exp(−iθn•J)        +exp(−iθn•J^T )exp(−iθn•J)(−in•J)        −in•{J^T +J}  (4.66)  {R^T (𝛂)R(𝛃)R(𝛂)}𝛃^′ =R^T (𝛂)R(𝛃)𝛃=R^T (𝛂)𝛃^′   (4.67)  R^T (𝛂)R(𝛃)R(𝛂)=R(𝛃^′ )=R(R(−𝛂)𝛃)  (4.68)  (1+i𝛂•J)(1+i𝛃•J)(1−i𝛂•J)⋍1−i(𝛃−𝛂×𝛃)•J  (4.69)  α_i β_j [J_i ,J_j ]=iα_i β_j Σ_k ε_(ijk) J_k   (4.70)  [J_i ,J_j ]=iΣ_k ε_(ijk) J_k   (4.71)  Prob(at x⇂ψ)=Σ_μ ∣⟨x,μ⇂ψ⟩∣^2   (4.72)  R(∅)= (((cos ∅),(−sin ∅),0),((sin ∅),(cos ∅),0),(0,0,1) )  (4.73)  J_z ^′ =≡M•J_z •M^+   (4.74)  S_x =(1/( (√2))) ((0,1,0),(1,0,1),(0,1,0) )  ; S_y =(1/( (√2))) ((0,(−i),0),(i,0,(−i)),(0,i,0) )  ; S_z = ((1,0,0),(0,0,0),(0,0,(−1)) )   (4.75)  ⟨x∣p⟩=e^(ip•x/h^� )   (4.76)  [{A,B},C]={A,[B,C]}+{[A,C],B}  (4.77)  G≡(1/2)(1−P)  (4.78)  S⟨ψ∣x∣ψ⟩=⟨ψ∣S^+ xS∣ψ⟩  (4.79)  S_(ij) =δ_(ij) −2n_i n_j   (4.80)  V(x)=f(R)+λxy   ; R=(√(x^2 +y^2 ))
(4.1)ψμ(x)x,μψ(4.2)ψμ(xa)=[1ax+12!(ax)2]ψμ(x)=exp(ax)ψμ(x)=x,μexp(iaph¯)ψ(4.3)ψU(a)ψ;U(a)exp(iap/h¯)translationoperator(4.4)ψμ(xa)=x,μU(a)ψ=x,μψ=ψμ(x)(4.5)ih¯ψax=ih¯ψx=pxψPassivetransformations(1)ψμ(x;a+y)=exp(ay)ψμ(x;y)(2)x,μ;0U(a)ψ=ψμ(x+a;0)=ψμ(x;a)(4.6)x0,μ=d3pp,μp,μx0,μ=1h3/2d3peix0p/h¯p,μ(4.7)U(a)x0,μ=1h3/2d3peix0p/h¯U(a)p,μ=1h3/2d3pei(x0+a)p/h¯p,μ=∣x0,a,μOperatorsfromexpectationvalues(1)ψAψ=ψBψ(2)λ(AχBχ)=λ(χBχA)(4.8)1=ψψ=ψU+UψunitiryoperatorU+U=I;U+=U1(4.9)U(δθ)=Iiδθτ+O(δθ)2(4.10)I=U+(δθ)U(δθ)=I+iδθ((τ+τ)+O(δθ)2(4.11)iψθ=τψ(4.12)U(θ)limN(1iθNτ)N=eiθττ(hermition)=generatorofU&thetransformation(4.13)U(α)=exp(iαJ);Ji:angularmomentumoperators(4.14)iψα=α^Jψq(4.15)paritytransformationP(100010001);Px=x(4.16)quantumparityoperatorP:Pψμ(x)x,μPψψμ(Px)=ψμ(x)=x,μψ(4.17)ψμ(x)=x,μPψ=x,μψ=x,μPψ=x,μψ=ψμ(x)(4.18)Pψ=d3xμ(x,μx,μPψ)=d3xμ(x,μx,μψ)=d3xμ(ψx,μx,μP2)=d3xμ(ψx,μx,μP)=ψP(4.19)Mirroroperatorsx,yMψ=y,xψ(4.20)U+(a)xU(a)=x+a(4.21)x+δa(1+iδaph¯)x(1iδaph¯)=xih¯[x,δap]+O(δa)2(4.22)[xi,pj]=ih¯δij(4.23)U+(a)xU(a)=U+(a)U(a)x+U+(a)[x,U(a)]=x+U+(a)[x,U(a)](4.24)U+(a)xU(a)=xih¯U+(a)[x,ap]U(a)=x+aRotationsinordinaryspaceRT=R1;det(R)=+1;R(α)α^=α^TrR(α)=1+2cosα;v=v+α×v(4.25)R(α)ψxψ=ψxψ=ψU+(α)xU(α)ψ(4.26)R(α)x=U+(α)xU(α)(4.27)x+δα×x(1+iδαJ)x(1iδαJ)=x+i[δαJ,x]+O(δα)2(4.28)(δα×x)i=ijϵijkδαjxk(4.29)ijϵijkδαjxk=ijδαj[Jj,xi](4.30)[Ji,xj]=ikϵijkxk(4.31)[Ji,vj]=ikϵijkvk(4.32)[Ji,pj]=ikϵijkpk(4.33)[Ji,Jj]=ikϵijkJk(4.34)ψSψ=ψU+(α)SU(α)ψ=ψSψ(4.35)S(1+iδαJ)S(1iδαJ)=S+iδα[J,S]+O(δα)2(4.36)[J,S]=0(4.37)[J,J2]=0(4.38)Theparityoperator:xPx=xψxψ=Pψxψ=ψxψ=ψP+xPψ(4.39){x,P}xP+Px=0(4.40){v,P}vP+Pv=0(4.41)vω=v(Pω)=Pvω=ωPω=ωω(4.42)±v±=P±v±=±P+vP±=(±)2±v±(4.43a)xPVψ=xVψ=V(x)xψ=V(x)xψ(4.43b)xVPψ=V(x)xPψ=V(x)xψ(4.44)p2P=kpkpkP=kpkPpk=kPpkpk=Pp2[p2,P]=0(4.45){P,[vi,Jj]}=ikϵijk{P,vk}=0(4.46)0={P,[vi,Jj]}=[{P,vi},Jj]{[P,Jj],vi}={[P,Jj],vi}(4.47)[P,Jj]=λP(4.48)ψJψ=ψP+JPψ=ψJψ(4.48)ψM+xMψ=ψyψMirroroperators(4.50)M+xM=yxM=My(4.51)ψ,t=eiHt/h¯ψ,0(4.52)U(t)=eiHt/h¯timeevolutionoperator(4.53)U(θ)U(t)ψ=U(t)U(θ)ψ(4.54a)xVU(α)ψ=V(x)xU(α)ψ=V(x)R(α)xψ(4.54b)xU(α)Vψ=R(α)xVψ=V(R(α)x)R(α)xψ(4.55)H=ni=1pi22mi+i<jV(xixj)(4.56)ψ,t=U(t)ψ,0(4.57)QtU+(t)QU(t)(4.58)Qt=ψ,tQψ,t=ψ,0U+(t)QU(t)ψ,0=ψ,0Qtψ,0(4.59),tψ,t=,0ψ,0;,tU(t),0(4.60)dQtdt=dU+dtQU+U+QdUdt(4.61)dUdt=iHh¯UdU+dt=iHh¯U+(4.62)ih¯dQtdt=HU+QU+U+QUH=[Qt,H](4.63)exp(iαJ)R(α)(4.64)I=RT(α)R(α)=exp(iαJ)Texp(iαJ)=exp(iαJT)exp(iαJ)(4.65)0=inJTexp(iθnJT)exp(iθnJ)+exp(iθnJT)exp(iθnJ)(inJ)in{JT+J}(4.66){RT(α)R(β)R(α)}β=RT(α)R(β)β=RT(α)β(4.67)RT(α)R(β)R(α)=R(β)=R(R(α)β)(4.68)(1+iαJ)(1+iβJ)(1iαJ)1i(βα×β)J(4.69)αiβj[Ji,Jj]=iαiβjkϵijkJk(4.70)[Ji,Jj]=ikϵijkJk(4.71)Prob(atxψ)=μx,μψ2(4.72)R()=(cossin0sincos0001)(4.73)Jz=≡MJzM+(4.74)Sx=12(010101010);Sy=12(0i0i0i0i0);Sz=(100000001)(4.75)xp=eipx/h¯(4.76)[{A,B},C]={A,[B,C]}+{[A,C],B}(4.77)G12(1P)(4.78)Sψxψ=ψS+xSψ(4.79)Sij=δij2ninj(4.80)V(x)=f(R)+λxy;R=x2+y2
Commented by Dwaipayan Shikari last updated on 18/Oct/20
Kindly don′t mark it as inappropiate. There are many   derivations in physics.
Kindlydontmarkitasinappropiate.Therearemanyderivationsinphysics.
Commented by Dwaipayan Shikari last updated on 18/Oct/20
A Theoretical  physicist
ATheoreticalphysicist

Leave a Reply

Your email address will not be published. Required fields are marked *