Menu Close

4-2x-1-1-4-2-log-2-2x-gt-2-log-x-2-log-1-x-2-2x-




Question Number 79263 by jagoll last updated on 23/Jan/20
4^(2x−1) +(1/4)^2 log^2 (2x)>^2 log(x)  {^2 log((1/x))−2^(2x) }
42x1+142log2(2x)>2log(x){2log(1x)22x}
Commented by john santu last updated on 24/Jan/20
(i) x>0  (ii)(4^(2x) /4)+(1/4){log_2  (2)+log_2 (x)}^2   >log_2 (x){−log_2 (x)−4^x }  let 4^x = u , log_2 (x)= v  (u^2 /4)+(1/4)(1+v)^2 >−4v^2 −4uv  u^2 +4uv+4v^2 +(1+v)^2 >0  (u+2v)^2 +(1+v)^2 >0  ⇒ { ((u+2v=0⇒4^x +2.log_2 (x)=0)),((1+v=0⇒1+log_2 (x)=0)) :}   x =(1/2) ∴ x∈R ∧x=(1/2)
(i)x>0(ii)42x4+14{log2(2)+log2(x)}2>log2(x){log2(x)4x}let4x=u,log2(x)=vu24+14(1+v)2>4v24uvu2+4uv+4v2+(1+v)2>0(u+2v)2+(1+v)2>0{u+2v=04x+2.log2(x)=01+v=01+log2(x)=0x=12xRx=12
Commented by john santu last updated on 24/Jan/20
check for x=(1/2)  4^(2((1/2))−1) +(1/4){log_2 (2.(1/2))}^2 >  log_2 ((1/2)){log_2 (2)−4^(1/2) }  1+(1/4). 0 > (−1).(−1)
checkforx=1242(12)1+14{log2(2.12)}2>log2(12){log2(2)412}1+14.0>(1).(1)
Commented by john santu last updated on 24/Jan/20
i think about this typing error.  should 4^(2x−1) +(1/4).log_2 ^2 (2x)≥  log_2 (x){log_2 ((1/x))−2^(2x) }
ithinkaboutthistypingerror.should42x1+14.log22(2x)log2(x){log2(1x)22x}
Commented by jagoll last updated on 24/Jan/20
thanks
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *