Menu Close

4-sin-36-cos-72-sin-108-




Question Number 111114 by bobhans last updated on 02/Sep/20
4 sin 36° cos 72° sin 108° ?
$$\mathrm{4}\:\mathrm{sin}\:\mathrm{36}°\:\mathrm{cos}\:\mathrm{72}°\:\mathrm{sin}\:\mathrm{108}°\:?\: \\ $$
Answered by bemath last updated on 02/Sep/20
  (√(bemath))   we want to compute the value of   4 sin 36° cos 72° sin 108° .  Let p = 4sin 36° cos 72° sin 108°    { ((sin 108° = sin (90°+18°) = cos 18°)),((2cos 72° cos 18° = cos 90° + cos 54° = cos 54°)) :}  p= 2sin 36° .cos 54°  ⇒cos 54° = sin 36°  p= 2 sin^2 (36°) = 1−(1−2sin^2 (36°))  p=1−cos 72° = 1−sin 18°  p = 1−((((√5)−1)/4))=((4−(√5)+1)/4)  p= ((5−(√5))/4)
$$\:\:\sqrt{\mathrm{bemath}} \\ $$$$\:\mathrm{we}\:\mathrm{want}\:\mathrm{to}\:\mathrm{compute}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\mathrm{4}\:\mathrm{sin}\:\mathrm{36}°\:\mathrm{cos}\:\mathrm{72}°\:\mathrm{sin}\:\mathrm{108}°\:. \\ $$$$\mathrm{Let}\:\mathrm{p}\:=\:\mathrm{4sin}\:\mathrm{36}°\:\mathrm{cos}\:\mathrm{72}°\:\mathrm{sin}\:\mathrm{108}°\: \\ $$$$\begin{cases}{\mathrm{sin}\:\mathrm{108}°\:=\:\mathrm{sin}\:\left(\mathrm{90}°+\mathrm{18}°\right)\:=\:\mathrm{cos}\:\mathrm{18}°}\\{\mathrm{2cos}\:\mathrm{72}°\:\mathrm{cos}\:\mathrm{18}°\:=\:\mathrm{cos}\:\mathrm{90}°\:+\:\mathrm{cos}\:\mathrm{54}°\:=\:\mathrm{cos}\:\mathrm{54}°}\end{cases} \\ $$$$\mathrm{p}=\:\mathrm{2sin}\:\mathrm{36}°\:.\mathrm{cos}\:\mathrm{54}° \\ $$$$\Rightarrow\mathrm{cos}\:\mathrm{54}°\:=\:\mathrm{sin}\:\mathrm{36}° \\ $$$$\mathrm{p}=\:\mathrm{2}\:\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{36}°\right)\:=\:\mathrm{1}−\left(\mathrm{1}−\mathrm{2sin}\:^{\mathrm{2}} \left(\mathrm{36}°\right)\right) \\ $$$$\mathrm{p}=\mathrm{1}−\mathrm{cos}\:\mathrm{72}°\:=\:\mathrm{1}−\mathrm{sin}\:\mathrm{18}° \\ $$$$\mathrm{p}\:=\:\mathrm{1}−\left(\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{4}}\right)=\frac{\mathrm{4}−\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{4}} \\ $$$$\mathrm{p}=\:\frac{\mathrm{5}−\sqrt{\mathrm{5}}}{\mathrm{4}} \\ $$
Answered by nimnim last updated on 02/Sep/20
=4sin36.cos(90−18).sin(90+18)  =4sin36.sin18cos18  =2sin36sin(2×18)  =2sin^2 36  =2[(1/4)(√(10−2(√5)))]^2   =(1/8)(10−2(√5))  =(1/4)(5−(√5))
$$=\mathrm{4sin36}.\mathrm{cos}\left(\mathrm{90}−\mathrm{18}\right).\mathrm{sin}\left(\mathrm{90}+\mathrm{18}\right) \\ $$$$=\mathrm{4sin36}.\mathrm{sin18cos18} \\ $$$$=\mathrm{2sin36sin}\left(\mathrm{2}×\mathrm{18}\right) \\ $$$$=\mathrm{2sin}^{\mathrm{2}} \mathrm{36} \\ $$$$=\mathrm{2}\left[\frac{\mathrm{1}}{\mathrm{4}}\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}}\right]^{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}\left(\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{5}−\sqrt{\mathrm{5}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *