Menu Close

4-sin-x-cos-x-3-




Question Number 146310 by mathdanisur last updated on 12/Jul/21
4 sin(x) cos(x) ≥ (√3)
$$\mathrm{4}\:{sin}\left({x}\right)\:{cos}\left({x}\right)\:\geqslant\:\sqrt{\mathrm{3}} \\ $$
Commented by mathdanisur last updated on 12/Jul/21
Solve the trigonometric inequality
$${Solve}\:{the}\:{trigonometric}\:{inequality} \\ $$
Commented by MJS_new last updated on 12/Jul/21
let a_k =(π/6)+kπ∧b_k =(π/3)+kπ∧k∈Z  ⇒  4sin x cos x ≥(√3) ⇔ a_k ≤x≤b_k  ∀k∈Z
$$\mathrm{let}\:{a}_{{k}} =\frac{\pi}{\mathrm{6}}+{k}\pi\wedge{b}_{{k}} =\frac{\pi}{\mathrm{3}}+{k}\pi\wedge{k}\in\mathbb{Z} \\ $$$$\Rightarrow \\ $$$$\mathrm{4sin}\:{x}\:\mathrm{cos}\:{x}\:\geqslant\sqrt{\mathrm{3}}\:\Leftrightarrow\:{a}_{{k}} \leqslant{x}\leqslant{b}_{{k}} \:\forall{k}\in\mathbb{Z} \\ $$
Commented by mathdanisur last updated on 13/Jul/21
thanks Ser
$${thanks}\:{Ser} \\ $$
Answered by puissant last updated on 12/Jul/21
4sin(x)cos(x)=2sin(2x)  ⇒2sin(2x)≥(√3)  ⇒sin(2x)≥((√3)/2)=sin(π/3)..
$$\mathrm{4sin}\left(\mathrm{x}\right)\mathrm{cos}\left(\mathrm{x}\right)=\mathrm{2sin}\left(\mathrm{2x}\right) \\ $$$$\Rightarrow\mathrm{2sin}\left(\mathrm{2x}\right)\geqslant\sqrt{\mathrm{3}} \\ $$$$\Rightarrow\mathrm{sin}\left(\mathrm{2x}\right)\geqslant\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}=\mathrm{sin}\frac{\pi}{\mathrm{3}}.. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *