Question Number 170416 by Mastermind last updated on 23/May/22
$$\int\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }{dx} \\ $$$$ \\ $$$${Mastermind} \\ $$
Answered by thfchristopher last updated on 23/May/22
$$\mathrm{Let}\:{x}=\mathrm{2sin}\:{t} \\ $$$${dx}=\mathrm{2cos}\:{tdt} \\ $$$$\mathrm{sin}\:{t}=\frac{{x}}{\mathrm{2}},\:\:\:\mathrm{cos}\:{t}=\frac{\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }}{\mathrm{2}} \\ $$$$\int\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }{dx} \\ $$$$=\int\sqrt{\mathrm{4}−\mathrm{4sin}^{\mathrm{2}} {t}\:}\left(\mathrm{2cos}\:{tdt}\right) \\ $$$$=\mathrm{4}\int\mathrm{cos}^{\mathrm{2}} {tdt} \\ $$$$=\mathrm{2}\int\left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}{t}\right){dt} \\ $$$$=\mathrm{2}{t}+\mathrm{sin}\:\mathrm{2}{t}+{C} \\ $$$$=\mathrm{2}{t}+\mathrm{2sin}\:{t}\mathrm{cos}\:{t}+{C} \\ $$$$=\mathrm{2sin}^{−\mathrm{1}} \left(\frac{{x}}{\mathrm{2}}\right)+\frac{{x}\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }}{\mathrm{2}}+{C} \\ $$
Commented by RANDHIR70 last updated on 23/May/22
Commented by Mastermind last updated on 24/May/22
$$ \\ $$$${Thanks} \\ $$
Answered by RANDHIR70 last updated on 23/May/22