Menu Close

4-x-dx-




Question Number 186566 by Davidtim last updated on 06/Feb/23
∫4^x^dx  =?
$$\int\mathrm{4}^{{x}^{{dx}} } =? \\ $$
Commented by mr W last updated on 06/Feb/23
∫4^x dx is meant?  ∫4^x dx  =∫e^(xln 4) dx  =(1/(ln 4))∫e^(xln 4) d(xln 4)  =(e^(x ln 4) /(ln 4))+C  =(4^x /(ln 4))+C
$$\int\mathrm{4}^{{x}} {dx}\:{is}\:{meant}? \\ $$$$\int\mathrm{4}^{{x}} {dx} \\ $$$$=\int{e}^{{x}\mathrm{ln}\:\mathrm{4}} {dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{ln}\:\mathrm{4}}\int{e}^{{x}\mathrm{ln}\:\mathrm{4}} {d}\left({x}\mathrm{ln}\:\mathrm{4}\right) \\ $$$$=\frac{{e}^{{x}\:\mathrm{ln}\:\mathrm{4}} }{\mathrm{ln}\:\mathrm{4}}+{C} \\ $$$$=\frac{\mathrm{4}^{{x}} }{\mathrm{ln}\:\mathrm{4}}+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *