Menu Close

41-47-find-remaider-




Question Number 187869 by BaliramKumar last updated on 23/Feb/23
((41!)/(47)) find remaider
41!47findremaider
Answered by Rasheed.Sindhi last updated on 23/Feb/23
According to Wilson′s theorem:  (47−1)!≡−1(mod 47)  46!≡−1+47(mod 47)  46!≡46(mod 47)  45!≡1(mod 47)  45×44!≡1+47×22=1035(mod 47)  44!≡23(mod 47)  44×43!≡23+47×7=352(mod 47)  43!≡8(mod 47)  43×42!≡8+47×41=1935(mod 47)  42!≡45(mod 47)  42×41!≡45+47×33=1596(mod 47)  41!≡38(mod 47)
AccordingtoWilsonstheorem:(471)!1(mod47)46!1+47(mod47)46!46(mod47)45!1(mod47)45×44!1+47×22=1035(mod47)44!23(mod47)44×43!23+47×7=352(mod47)43!8(mod47)43×42!8+47×41=1935(mod47)42!45(mod47)42×41!45+47×33=1596(mod47)41!38(mod47)
Answered by BaliramKumar last updated on 23/Feb/23
  other approach  According to Wilson′s theorem:  (47−1)!≡−1(mod 47)  46!≡−1 (mod 47)  46×45×44×43×42×41!≡−1(mod 47)  (−1)(−2)(−3)(−4)(−5)41!≡−1(mod 47)  −120×41!≡−1(mod 47)  120×41! ≡ 1   (mod 47)  120×41! ≡ 48   (mod 47)  5×41! ≡ 2 (mod 47)  5×41! ≡ 2+47×4 (mod 47)  5×41! ≡ 190 (mod 47)  41!≡38(mod 47)
otherapproachAccordingtoWilsonstheorem:(471)!1(mod47)46!1(mod47)46×45×44×43×42×41!1(mod47)(1)(2)(3)(4)(5)41!1(mod47)120×41!1(mod47)120×41!1(mod47)120×41!48(mod47)5×41!2(mod47)5×41!2+47×4(mod47)5×41!190(mod47)41!38(mod47)
Commented by Rasheed.Sindhi last updated on 24/Feb/23
∩i⊂∈!
i⊂∈!

Leave a Reply

Your email address will not be published. Required fields are marked *