Menu Close

4cos-2-x-sin-x-2sin-2-x-3sin-x-where-pi-2-x-pi-2-




Question Number 104904 by bemath last updated on 24/Jul/20
4cos^2 x sin x −2sin^2 x = 3sin x  where −(π/2)≤x≤(π/2)
4cos2xsinx2sin2x=3sinxwhereπ2xπ2
Answered by bramlex last updated on 24/Jul/20
sin x (4cos^2 x−2sin x−3) = 0   { ((sin x = 0 → x_1  = 0)),((4cos^2  x −2sin x−3 = 0)) :}  4−4sin^2 x−2sin x−3 = 0  4sin^2 x+2sin x−1 = 0  sin x = ((−2 ± (√(4+16)))/8) = ((−1±(√5))/4)   { ((x_2 = 18° = (π/(10)))),((x_3 = −54°= −((3π)/(10)) ⊸◊⊸)) :}
sinx(4cos2x2sinx3)=0{sinx=0x1=04cos2x2sinx3=044sin2x2sinx3=04sin2x+2sinx1=0sinx=2±4+168=1±54{x2=18°=π10x3=54°=3π10
Answered by Dwaipayan Shikari last updated on 24/Jul/20
2sinx(2cos^2 x−sinx)=3sinx  2−2sin^2 x−sinx=(3/2)   or  sinx=0  2sin^2 x+sinx−(1/2)=0  4sin^2 x+2sinx−1=0  sinx=((−2+(√(4+16)))/8)=((−(√5)±1)/4)   or sinx=0  ⇒x=kπ  sinx=sin(π/(10))                        (  k∈Z)  x=kπ±(π/(10))  or sinx=−((((√5)+1)/4))   x=−((3π)/(10))  Solutions are {(π/(10)),0,−((3π)/(10))}
2sinx(2cos2xsinx)=3sinx22sin2xsinx=32orsinx=02sin2x+sinx12=04sin2x+2sinx1=0sinx=2+4+168=5±14orsinx=0x=kπsinx=sinπ10(kZ)x=kπ±π10orsinx=(5+14)x=3π10Solutionsare{π10,0,3π10}
Answered by 1549442205PVT last updated on 24/Jul/20
⇔sinx(4cos^(2 ) x−2sinx−3)=0  ⇔sinx[(4(1−sin^(2 ) x)−2sinx−3]=0  ⇔sinx(4sin^2 x+2sinx−1)=0  i)sinx=0⇔x=kπ .Since x∈[−(π/2),(π/2)]  ⇒x=0  ii)4sin^2 x+2sinx−1=0  ⇔sinx =((−1+(√5))/4) or sinx=((−1−(√5))/4)  a)sinx=(((√5)−1)/4)=sin(π/(10))⇒x=(π/(10))  b)sinx=((−((√5)+1))/4)=sin((−3π)/(10))⇒x=((−3π)/(10))  Thus,x∈{0,(π/(10)),((−3π)/(10))}
sinx(4cos2x2sinx3)=0sinx[(4(1sin2x)2sinx3]=0sinx(4sin2x+2sinx1)=0i)sinx=0x=kπ.Sincex[π2,π2]x=0ii)4sin2x+2sinx1=0sinx=1+54orsinx=154a)sinx=514=sinπ10x=π10b)sinx=(5+1)4=sin3π10x=3π10Thus,x{0,π10,3π10}

Leave a Reply

Your email address will not be published. Required fields are marked *