Menu Close

4k-1-k-3-4k-1-k-3-11-k-3-1or11-I-can-t-understand-Who-can-help-me-




Question Number 34005 by math2018 last updated on 29/Apr/18
((4k+1)/(k+3)),(4k+1,k+3)=(11,k+3)=1or11;  I can′t understand.Who can help me?
4k+1k+3,(4k+1,k+3)=(11,k+3)=1or11;Icantunderstand.Whocanhelpme?
Commented by tanmay.chaudhury50@gmail.com last updated on 29/Apr/18
pls clarify the question or upload the image of question
plsclarifythequestionoruploadtheimageofquestion
Commented by math2018 last updated on 29/Apr/18
The original question is −  “If  ((4n−2)/(n+5)) is the square of a rational number,  find all integers n pls.  Answer:  (1)((4n−2)/(n+5))=((2(2n−1))/(n+5));  (2)let n=2k+1,then we have   ((4n−2)/(n+5))=((4k+1)/(k+3)),...
TheoriginalquestionisIf4n2n+5isthesquareofarationalnumber,findallintegersnpls.Answer:(1)4n2n+5=2(2n1)n+5;(2)letn=2k+1,thenwehave4n2n+5=4k+1k+3,
Commented by MJS last updated on 29/Apr/18
n=13 seems to be the only solution...    two possibilties  1. ((4k+1)/(k+3)) is a reduced fraction  ⇒ 4k+1 and k+3 both must be square integers  4k+1=p^2   k+3=q^2  ⇒ k=q^2 −3  4(q^2 −3)+1=p^2  ⇒ p^2 =4q^2 −11  ⇒ p^2 =(2q)^2 −11=r^2 −11  so we′re looking for 2 integers with  r^2 −p^2 =11 ⇒ r=6 ∧ p=5 ⇒ q=3 ⇒  ⇒ k=6 ⇒ n=13    2. ((4k+1)/(k+3)) can be reduced by factor f≠±1  4k+1=f×u ⇒ k=((fu−1)/4) (I.)  k+3=f×v ⇒ k=fv−3 (II.)  ((fu−1)/4)=fv−3 ⇒ f=((11)/(4v−u)); f, u, v ∈Z\{0} ⇒  ⇒ 4v−u=±11  2.1.  4v−u=−11 ⇒ u=4v+11  (I.)=(II.)  ((−11(4v+11)−1)/4)=−11v−3  −11v−((61)/2)=−11v−3 ⇒ no solution  2.2.  4v−u=11 ⇒ u=4v−11  (I.)=(II.)  ((11(4v−11)−1)/4)=11v−3  11v−((61)/2)=11v−3 ⇒ no solution
n=13seemstobetheonlysolutiontwopossibilties1.4k+1k+3isareducedfraction4k+1andk+3bothmustbesquareintegers4k+1=p2k+3=q2k=q234(q23)+1=p2p2=4q211p2=(2q)211=r211sowerelookingfor2integerswithr2p2=11r=6p=5q=3k=6n=132.4k+1k+3canbereducedbyfactorf±14k+1=f×uk=fu14(I.)k+3=f×vk=fv3(II.)fu14=fv3f=114vu;f,u,vZ{0}4vu=±112.1.4vu=11u=4v+11(I.)=(II.)11(4v+11)14=11v311v612=11v3nosolution2.2.4vu=11u=4v11(I.)=(II.)11(4v11)14=11v311v612=11v3nosolution
Commented by math2018 last updated on 29/Apr/18
Thanks Sir!
ThanksSir!
Answered by tanmay.chaudhury50@gmail.com last updated on 29/Apr/18
as per your comment((4n−2)/(n+5)) is the squared   value of a rational number  let us examine  unit place of a number         unit place of squared  1                                                         1  2                                                          4  3                                                           9  4                                                           6  5                                                           5  6                                                           6  7                                                           9  8                                                          4  9                                                          1  4n−2 is even so unit place of N_(r ) either 4 or 6  n+5 odd so unit place may be 1 or 5 or 9  let me think...is there any other information in[t  in the question...pls check
asperyourcomment4n2n+5isthesquaredvalueofarationalnumberletusexamineunitplaceofanumberunitplaceofsquared1124394655667984914n2isevensounitplaceofNreither4or6n+5oddsounitplacemaybe1or5or9letmethinkisthereanyotherinformationin[tinthequestionplscheck
Commented by math2018 last updated on 30/Apr/18
Thank you Sir.The right answer is n=13 and there is no more information to add.
ThankyouSir.Therightanswerisn=13andthereisnomoreinformationtoadd.

Leave a Reply

Your email address will not be published. Required fields are marked *