Menu Close

4sin-2-x-4sin-x-cos-2-x-2cos-x-0-lt-x-lt-pi-2-Find-sin-x-




Question Number 173787 by mnjuly1970 last updated on 18/Jul/22
 4sin^( 2) (x)− 4sin(x)=cos^( 2) (x)−2cos(x)     , 0<x<(π/2) .   Find       sin(x)=?
4sin2(x)4sin(x)=cos2(x)2cos(x),0<x<π2.Findsin(x)=?
Commented by infinityaction last updated on 18/Jul/22
(1/( (√5)))
15
Commented by som(math1967) last updated on 18/Jul/22
(3/5) also
35also
Commented by infinityaction last updated on 18/Jul/22
   4sin^2 x−4sinx+1 = cos^2 x−2cos x+1     (1−2sinx)^2   =  (1−cosx)^2         (1−2sinx)^2  − (1−cosx)^2  = 0    (cosx−2sinx)(2−2sinx−cos x)= 0       if   cosx−2sinx = 0 ⇒ tanx = (1/2)        sinx = (1/( (√5)))         2−2sinx  =  (√(1−sin^2 x ))       5sin^2 x −8sinx +3 = 0     (sinx−1)(5sinx−3)=0      sinx = 1  (rejected)      sinx = (3/5)
4sin2x4sinx+1=cos2x2cosx+1(12sinx)2=(1cosx)2(12sinx)2(1cosx)2=0(cosx2sinx)(22sinxcosx)=0ifcosx2sinx=0tanx=12sinx=1522sinx=1sin2x5sin2x8sinx+3=0(sinx1)(5sinx3)=0sinx=1(rejected)sinx=35
Commented by mnjuly1970 last updated on 18/Jul/22
  thank you so much sir..
thankyousomuchsir..
Commented by MJS_new last updated on 18/Jul/22
why do you reject 1?
whydoyoureject1?
Commented by infinityaction last updated on 18/Jul/22
given in the question  0<x<(π/2)
giveninthequestion0<x<π2
Commented by Tawa11 last updated on 18/Jul/22
Great sirs
Greatsirs
Commented by MJS_new last updated on 18/Jul/22
ok didn′t notice...
okdidntnotice
Commented by infinityaction last updated on 18/Jul/22
   no problem sir your algebra      is very good      i am student of undergruate      so can you suggest me an      algebra book ??
noproblemsiryouralgebraisverygoodiamstudentofundergruatesocanyousuggestmeanalgebrabook??
Commented by MJS_new last updated on 18/Jul/22
sorry I can′t. I studied math more than 20  years ago but I became a musician. math is  only my recreational sport now...
sorryIcant.Istudiedmathmorethan20yearsagobutIbecameamusician.mathisonlymyrecreationalsportnow
Commented by infinityaction last updated on 19/Jul/22
ok sir thanks
oksirthanks
Answered by MJS_new last updated on 18/Jul/22
x=2arctan t  ((−8t^3 +16t^2 −8t)/((t^2 +1)^2 ))=((3t^4 −2t^2 −1)/((t^2 +1)^2 ))  −8t(t−1)^2 =(t−1)(t+1)(3t^2 +1)  t_1 =1  3t^3 +11t^2 −7t+1=0  (3t−1)(t+2−(√5))(t+2+(√5))=0  t_2 =(1/3)  t_3 =−2+(√5)  t_4 =−2−(√5)  sin x =sin 2arctan t =((2t)/(t^2 +1))  sin x ∈{−((√5)/5), ((√5)/5), (3/5), 1}
x=2arctant8t3+16t28t(t2+1)2=3t42t21(t2+1)28t(t1)2=(t1)(t+1)(3t2+1)t1=13t3+11t27t+1=0(3t1)(t+25)(t+2+5)=0t2=13t3=2+5t4=25sinx=sin2arctant=2tt2+1sinx{55,55,35,1}
Answered by a.lgnaoui last updated on 18/Jul/22
4sin^2 (x)−4sin (x)=1−sin^2 (x)−2(√(1−sin^2 (x) ))  posins   sin(x)=z   5z^2  −4z−1 =−2(√(1−z^2  ))  [z−1 ]^2 [5z +1]^2 =4(1−z^2 )   (1−z)(5z+1)^2 =4(1+z)  (1−z)(25z^2 +10z+1)=4z+4  25z^2 +10z+1−25z^3 −10z^2 −z−4z−4=0  −25z^3 +15z^2 −5z−3=0  25z^3 −15z^2 +5z+3=0  z^3 −(3/5)z^2 +(z/5)+(3/(25))=0  Z=z+1/5  Z^3 =z^3 +(3/5)z^2 +(3/(25))z+(1/(125))  −(3/5)Z^2 =((−3)/5)z^2 +−(6/(25))z+((−3)/(125))  Z=z+(1/5)  Z^3 +((2/(25)))Z+((22)/(125))=0      p=(2/(25))  q=((22)/(125))  p^3 =(4×8/5^6 )/27+(4×11^2 )/  Δ=484/5^6 +((32)/(27×5^6 ))=((484×27+32)/(3^3 ×5^6 ))=((13068+32)/)=((13100)/(421875))=0,031⇒(√Δ)=0,176  q=((22)/(125))=0,176⇒(q/2)=0,088    =−q/2±[^3 (√(((−q)/2)±(4p^3 +27q^2 )/27)))]  /2      (√(0,176−0,088))  Z=0,088+[^3 (√(0,088+0,176))]/2  Z= 0,088 +[^3 (√(−0,088+0,176))]/2   Z=  0,64             et       Z=−0,56  z=Z−(1/5)  ⇒  sin (x)=0,44                               sin (x)=0,36
4sin2(x)4sin(x)=1sin2(x)21sin2(x)posinssin(x)=z5z24z1=21z2[z1]2[5z+1]2=4(1z2)(1z)(5z+1)2=4(1+z)(1z)(25z2+10z+1)=4z+425z2+10z+125z310z2z4z4=025z3+15z25z3=025z315z2+5z+3=0z335z2+z5+325=0Z=z+1/5Z3=z3+35z2+325z+112535Z2=35z2+625z+3125Z=z+15Z3+(225)Z+22125=0p=225q=22125p3=(4×8/56)/27+(4×112)/Δ=484/56+3227×56=484×27+3233×56=13068+32=13100421875=0,031Δ=0,176q=22125=0,176q2=0,088=q/2±[3q2±(4p3+27q2)/27)]/20,1760,088Z=0,088+[30,088+0,176]/2Z=0,088+[30,088+0,176]/2Z=0,64etZ=0,56z=Z15sin(x)=0,44sin(x)=0,36

Leave a Reply

Your email address will not be published. Required fields are marked *